Groupe symplectiqueEn mathématiques, le terme groupe symplectique est utilisé pour désigner deux familles différentes de groupes linéaires. On les note Sp(2n, K) et Sp(n), ce dernier étant parfois nommé groupe compact symplectique pour le distinguer du premier. Cette notation ne fait pas l’unanimité et certains auteurs en utilisent d’autres, différant généralement d’un facteur 2. La notation utilisée dans cet article est en rapport avec la taille des matrices représentant les groupes.
Braid groupIn mathematics, the braid group on n strands (denoted ), also known as the Artin braid group, is the group whose elements are equivalence classes of n-braids (e.g. under ambient isotopy), and whose group operation is composition of braids (see ). Example applications of braid groups include knot theory, where any knot may be represented as the closure of certain braids (a result known as Alexander's theorem); in mathematical physics where Artin's canonical presentation of the braid group corresponds to the Yang–Baxter equation (see ); and in monodromy invariants of algebraic geometry.
Espace des lacetsEn mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins.
Produit libreEn mathématiques, et plus particulièrement en théorie des groupes, le produit libre de deux groupes G et H est un nouveau groupe, noté G∗H, qui contient G et H comme sous-groupes, est engendré par les éléments de ces sous-groupes, et constitue le groupe « le plus général » possédant ces propriétés. Le produit libre est le coproduit, ou « somme », dans la catégorie des groupes, c'est-à-dire que la donnée de deux morphismes, de G et H dans un même groupe K, équivaut à celle d'un morphisme de G∗H dans K.
Étale fundamental groupThe étale or algebraic fundamental group is an analogue in algebraic geometry, for schemes, of the usual fundamental group of topological spaces. In algebraic topology, the fundamental group of a pointed topological space is defined as the group of homotopy classes of loops based at . This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology.
Fundamental groupoidIn algebraic topology, the fundamental groupoid is a certain topological invariant of a topological space. It can be viewed as an extension of the more widely-known fundamental group; as such, it captures information about the homotopy type of a topological space. In terms of , the fundamental groupoid is a certain functor from the category of topological spaces to the category of groupoids. Let X be a topological space. Consider the equivalence relation on continuous paths in X in which two continuous paths are equivalent if they are homotopic with fixed endpoints.
Bouquet (mathématiques)In topology, the wedge sum is a "one-point union" of a family of topological spaces. Specifically, if X and Y are pointed spaces (i.e. topological spaces with distinguished basepoints and ) the wedge sum of X and Y is the quotient space of the disjoint union of X and Y by the identification where is the equivalence closure of the relation More generally, suppose is a indexed family of pointed spaces with basepoints The wedge sum of the family is given by: where is the equivalence closure of the relation In other words, the wedge sum is the joining of several spaces at a single point.
Boucle d'oreille hawaïennedroite|vignette|250x250px|La boucle d'oreille hawaïenne. Seuls les dix plus grands cercles sont affichés. En mathématiques, la boucle d'oreille hawaïenne, aussi appelée anneaux hawaïens, est un espace topologique obtenu par réunion d’une suite de cercles dans le plan Euclidien R2, qui sont tangents intérieurement et de rayon décroissant vers 0. Par exemple, on peut utiliser la famille des cercles de centre (1/n, 0) et de rayon 1/n pour tout entier naturel non nul n.
Lacet (mathématiques)En mathématiques, notamment en analyse complexe et en topologie, un lacet est la modélisation d'une « boucle ». C'est un chemin continu et fermé, c'est-à-dire que ses extrémités sont confondues. Par exemple, tout cercle dans le plan euclidien est un lacet. Soit est un espace topologique. Définition 1 : On appelle lacet sur toute application continue telle que . Autrement dit, un lacet sur est un chemin sur dont les deux extrémités (le point initial et le point final) sont identiques.
Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.