FactorielleEn mathématiques, la factorielle d'un entier naturel n est le produit des nombres entiers strictement positifs inférieurs ou égaux à n. Cette opération est notée avec un point d'exclamation, n!, ce qui se lit soit « factorielle de n », soit « factorielle n », soit « n factorielle ». Cette notation a été introduite en 1808 par Christian Kramp. Par exemple, la factorielle 10 exprime le nombre de combinaisons possibles de placement des 10 convives autour d'une table (on dit la permutation des convives).
Fonction zêta de Riemannvignette|upright=2|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : des couleurs vives indiquent des valeurs proches de 0 et la nuance indique l'argument de la valeur. Le point blanc pour s = 1 est le pôle ; les points noirs sur l'axe réel négatif (demi-droite horizontale) et sur la droite critique Re(s) = 1/2 (droite verticale) sont les zéros. vignette|upright=2|Carte des couleurs utilisées dans la figure du dessus.
Moyenne arithmético-géométriqueLa moyenne arithmético-géométrique de deux réels positifs est une valeur intermédiaire obtenue comme limite de deux suites adjacentes satisfaisant une relation de récurrence qui reprend les formules de moyennes arithmétique et géométrique. La convergence quadratique de ces suites permet une approximation rapide de la moyenne arithmético-géométrique qui est notamment associée à la longueur d'une ellipse en fonction des longueurs de ses axes.
Intégrale elliptiqueLes intégrales elliptiques interviennent dans de nombreux problèmes de physique mathématique : comme par exemple, le calcul de la période d'un pendule aux grandes amplitudes et plus généralement les formes d'équilibre ellipsoïdales des corps en rotation autour d'un axe (planètes, étoiles, goutte d'eau, noyau atomique,...). Une intégrale elliptique est une intégrale de la forme où est une fonction rationnelle à deux variables, est une fonction polynomiale de degré 3 ou 4 avec des racines simples et est une constante.
Fonction de BesselEn mathématiques, et plus précisément en analyse, les fonctions de Bessel, appelées aussi quelquefois fonctions cylindriques, découvertes par le mathématicien suisse Daniel Bernoulli, portent le nom du mathématicien allemand Friedrich Wilhelm Bessel. Bessel développa l'analyse de ces fonctions en 1816 dans le cadre de ses études du mouvement des planètes induit par l'interaction gravitationnelle, généralisant les découvertes antérieures de Bernoulli.
Fonction entièreEn analyse complexe, une fonction entière est une fonction holomorphe définie sur tout le plan complexe. C'est le cas notamment de la fonction exponentielle complexe, des fonctions polynomiales et de leurs combinaisons par composition, somme et produit, telles que sinus, cosinus et les fonctions hyperboliques. Le quotient de deux fonctions entières est une fonction méromorphe. Considérée comme un cas particulier de la théorie des fonctions analytiques, la théorie élémentaire des fonctions entières ne fait que tirer les conséquences de la théorie générale.
Coefficient binomialEn mathématiques, les coefficients binomiaux, ou coefficients du binôme, définis pour tout entier naturel n et tout entier naturel k inférieur ou égal à n, donnent le nombre de parties à k éléments d'un ensemble à n éléments. On les note - qui se lit « k parmi n » - ou , la lettre C étant l'initiale du mot « combinaison » Les coefficients binomiaux s'expriment à l'aide de la fonction factorielle : Ils interviennent dans de nombreux domaines des mathématiques : développement du binôme en algèbre, dénombrements, développement en série, lois de probabilités, etc.
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Fonction digammaEn mathématiques, la fonction digamma ou fonction psi est définie comme la dérivée logarithmique de la fonction gamma : À la suite des travaux d'Euler sur la fonction gamma, James Stirling a introduit la fonction digamma en 1730, en la notant par Ϝ, la lettre grecque digamma (majuscule). Elle fut par la suite étudiée par Legendre, Poisson et Gauss vers 1810 ; la convergence de la série de Stirling pour cette fonction a été démontrée par Stern en 1847. Elle est désormais le plus souvent notée par la lettre ψ (psi minuscule).
Nombre de BernoulliEn mathématiques, les nombres de Bernoulli, notés B (ou parfois b pour ne pas les confondre avec les polynômes de Bernoulli ou avec les nombres de Bell), constituent une suite de nombres rationnels.