Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Décomposition en valeurs singulièresEn mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres.
HermitienPlusieurs entités mathématiques sont qualifiées d'hermitiennes en référence au mathématicien Charles Hermite. Produit scalaire#Généralisation aux espaces vectoriels complexesProduit scalaire hermitien Soit E un espace vectoriel complexe. On dit qu'une application f définie sur E x E dans C est une forme sesquilinéaire à gauche si quels que soient les vecteurs X, Y, Z appartenant à E, et a, b des scalaires : f est semi-linéaire par rapport à la première variable et f est linéaire par rapport à la deuxième variable Une telle forme est dite hermitienne (ou à symétrie hermitienne) si de plus : ou, ce qui est équivalent : Elle est dite hermitienne définie positive si pour tout vecteur .
Square matrixIn mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied. Square matrices are often used to represent simple linear transformations, such as shearing or rotation. For example, if is a square matrix representing a rotation (rotation matrix) and is a column vector describing the position of a point in space, the product yields another column vector describing the position of that point after that rotation.
Opérateur unitaireEn analyse fonctionnelle, un opérateur unitaire est un opérateur linéaire U d'un espace de Hilbert tel queUU = UU = Ioù U* est l'adjoint de U, et I l'opérateur identité. Cette propriété est équivalente à : U est une application d' dense et U préserve le produit scalaire ⟨ , ⟩. Autrement dit, pour tous vecteurs x et y de l'espace de Hilbert, ⟨Ux, Uy⟩ = ⟨x, y⟩ (ce qui entraîne que U est linéaire). D'après l'identité de polarisation, on peut remplacer « U préserve le produit scalaire » par « U préserve la norme » donc par « U est une isométrie qui fixe 0 ».
Norme d'opérateurEn mathématiques, et plus particulièrement en analyse fonctionnelle, une norme d'opérateur ou norme subordonnée est une norme définie sur l'espace des opérateurs bornés entre deux espaces vectoriels normés. Entre deux tels espaces, les opérateurs bornés ne sont autres que les applications linéaires continues. Sur un corps K « valué » (au sens : muni d'une valeur absolue) et non discret (typiquement : K = R ou C), soient E et F deux espaces vectoriels normés respectivement munis des normes ‖ ‖ et ‖ ‖.
Réduction de JordanLa réduction de Jordan est la traduction matricielle de la réduction des endomorphismes introduite par Camille Jordan. Cette réduction est tellement employée, en particulier en analyse pour la résolution d'équations différentielles ou pour déterminer le terme général de certaines suites récurrentes, qu'on la nomme parfois « jordanisation des endomorphismes ». Elle consiste à exprimer la matrice d'un endomorphisme dans une base, dite base de Jordan, où l'expression de l'endomorphisme est réduite.
Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Endomorphisme normalUn endomorphisme normal est un opérateur d'un espace de Hilbert qui commute avec son adjoint. Soient H un espace de Hilbert (réel ou complexe) et u un endomorphisme de H, d'adjoint u*. On dit que u est normal si Les endomorphismes autoadjoints sont normaux (cas u* = u). Les endomorphismes antiautoadjoints sont normaux (cas u* = –u). Les isométries vectorielles sont des endomorphismes normaux (cas u* = u).