Ensemble partiellement ordonnéEn mathématiques, un ensemble partiellement ordonné (parfois appelé poset d'après l'anglais partially ordered set) formalise et généralise la notion intuitive d'ordre ou d'arrangement entre les éléments d'un ensemble. Un ensemble partiellement ordonné est un ensemble muni d'une relation d'ordre qui indique que pour certains couples d'éléments, l'un est plus petit que l'autre. Tous les éléments ne sont pas forcément comparables, contrairement au cas d'un ensemble muni d'un ordre total.
Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Relation antisymétriqueEn mathématiques, une relation (binaire, interne) R sur un ensemble E est dite antisymétrique si elle vérifie : ce qui signifie que l'intersection de son graphe avec celui de sa relation réciproque est incluse dans la diagonale de E, autrement dit : La condition (1) peut aussi s'écrire On remarque l'antisymétrie d'une relation sur son diagramme sagittal par le fait qu'il n'y a pas de double flèche (donc que des sens uniques).
Groupe trivialEn mathématiques, un groupe trivial est un groupe constitué du seul élément e. Tous les groupes triviaux sont isomorphes, c'est pourquoi on dit souvent le groupe trivial. L'opération de groupe est e + e = e. L'élément e est le neutre, et le groupe est abélien et même cyclique. On ne doit pas confondre le groupe trivial avec l'ensemble vide (qui n'a pas d'élément, donc pas d'élément neutre, si bien qu'il ne peut pas être un groupe). Le groupe trivial est « le » groupe cyclique d'ordre 1, noté C1.