Concepts associés (32)
Processus gaussien
En théorie des probabilités et en statistiques, un processus gaussien est un processus stochastique (une collection de variables aléatoires avec un index temporel ou spatial) de telle sorte que chaque collection finie de ces variables aléatoires suit une loi normale multidimensionnelle ; c'est-à-dire que chaque combinaison linéaire est normalement distribuée. La distribution d'un processus gaussien est la loi jointe de toutes ces variables aléatoires. Ses réalisations sont donc des fonctions avec un domaine continu.
Lemme d'Itō
Le lemme d'Itō, ou formule d'Itō, est l'un des principaux résultats de la théorie du calcul stochastique, qui permet d'exprimer la différentielle d'une fonction d'un processus stochastique au cours du temps. Ce lemme offre un moyen de manipuler le mouvement brownien ou les solutions d'équations différentielles stochastiques (EDS). La formule d'Itō a été démontrée pour la première fois par le mathématicien japonais Kiyoshi Itō dans les années 1940.
Pont brownien
En mathématique, plus précisément théorie des probabilités, un pont brownien standard est un processus stochastique à temps continu de même loi qu'un processus de Wiener mais conditionné à s'annuler en 0 et en 1. À ne pas confondre avec l'excursion brownienne. Le pont brownien standard est ainsi également appelé « mouvement brownien attaché » ("tied down Brownian motion" en anglais), « mouvement brownien attaché en 0 et 1 » ("Brownian motion tied down at 0 and 1" en anglais) ou « mouvement brownien épinglé » ("pinned Brownian motion" en anglais).
Variables indépendantes et identiquement distribuées
vignette|upright=1.5|alt=nuage de points|Ce nuage de points représente 500 valeurs aléatoires iid simulées informatiquement. L'ordonnée d'un point est la valeur simulée suivante, dans la liste des 500 valeurs, de la valeur simulée pour l'abscisse du point. En théorie des probabilités et en statistique, des variables indépendantes et identiquement distribuées sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes. On dit que ce sont des variables aléatoires iid ou plus simplement des variables iid.
Théorème de Donsker
En théorie des probabilités, le théorème de Donsker établit la convergence en loi d'une marche aléatoire vers un processus stochastique gaussien. Il est parfois appelé le théorème central limite fonctionnel. Ce théorème est une référence pour la convergence en loi de marches aléatoires renormalisées vers un processus à temps continus. De nombreux théorèmes sont alors dits de « type Donsker ». Soient une suite iid de variables aléatoires centrées, de carré intégrable et de variance .
Intégrale de chemin
Une 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Équation de Langevin
Léquation de Langevin' (1908) est une équation stochastique pour le mouvement brownien. Dans l'approche théorique de Langevin, une grosse particule brownienne de masse m, supposée animée à l'instant t d'une vitesse , est soumise à deux forces bien distinctes : une force de frottement fluide du type , où k est une constante positive. Dans le cas d'une particule sphérique de rayon a, cette constante s'écrit explicitement : (loi de Stokes). une force complémentaire, notée , qui synthétise la résultante des chocs aléatoires des molécules de fluide environnantes.
Stationary increments
In probability theory, a stochastic process is said to have stationary increments if its change only depends on the time span of observation, but not on the time when the observation was started. Many large families of stochastic processes have stationary increments either by definition (e.g. Lévy processes) or by construction (e.g. random walks) A stochastic process has stationary increments if for all and , the distribution of the random variables depends only on and not on .
Théorème de Girsanov
Dans la théorie des probabilités, le théorème de Girsanov indique comment un processus stochastique change si l'on change de mesure. Ce théorème est particulièrement important dans la théorie des mathématiques financières dans le sens où il donne la manière de passer de la probabilité historique qui décrit la probabilité qu'un actif sous-jacent (comme le prix d'une action ou un taux d'intérêt) prenne dans le futur une valeur donnée à la probabilité risque neutre qui est un outil très utile pour évaluer la valeur d'un dérivé du sous-jacent.
Bruit blanc
thumb|Échantillon de bruit blanc. thumb|Spectre plat d'un bruit blanc (sur l'abscisse, la fréquence ; en ordonnée, l'intensité). Un bruit blanc est une réalisation d'un processus aléatoire dans lequel la densité spectrale de puissance est la même pour toutes les fréquences de la bande passante. Le bruit additif blanc gaussien est un bruit blanc qui suit une loi normale de moyenne et variance données. Des générateurs de signaux aléatoires () sont utilisés pour des essais de dispositifs de transmission et, à faible niveau, pour l'amélioration des systèmes numériques par dither.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.