Couvre la méthode de Newton sur les variétés riemanniennes, en se concentrant sur les conditions d'optimalité du second ordre et la convergence quadratique.
Explore les méthodes de descente des gradients pour optimiser les fonctions sur les collecteurs, en mettant l'accent sur les petites garanties de gradient et la convergence globale.
Explore les déformations infinitésimales des cartes unidimensionnelles, en discutant des caractéristiques communes, des méthodes et des résultats récents dans l'expansion et l'expansion des cartes.