Loi du demi-cercleEn théorie des probabilités et en statistique, la loi du demi-cercle ou loi du demi-cercle de Wigner est une loi de probabilité sur l'intervalle [-R,R] et dont le graphe de la densité de probabilité est un demi-cercle de rayon R, centré en 0 et convenablement renormalisé, ce qui en fait, en fait, une ellipse. En anglais, cette loi est nommée Wigner semicircle distribution, d'après le nom du physicien Eugene Wigner. En théorie des nombres, la loi du demi-cercle est parfois appelée loi de Satō-Tate, voir la conjecture de Satō-Tate.
Loi de PoissonEn théorie des probabilités et en statistiques, la loi de Poisson est une loi de probabilité discrète qui décrit le comportement du nombre d'événements se produisant dans un intervalle de temps fixé, si ces événements se produisent avec une fréquence moyenne ou espérance connue, et indépendamment du temps écoulé depuis l'événement précédent. gauche|vignette|Chewing gums sur un trottoir. Le nombre de chewing gums sur un pavé est approximativement distribué selon une loi de Poisson.
Loi de WishartEn théorie des probabilités et en statistique, la loi de Wishart est la généralisation multidimensionnelle de la loi du χ2, ou, dans le cas où le nombre de degré de libertés n'est pas entier, de la loi gamma. La loi est dénommée en l'honneur de John Wishart qui la formula pour la première fois en 1928. C'est une famille de lois de probabilité sur les matrices définies positives, symétriques. Une variable aléatoire de loi de Wishart est donc une matrice aléatoire.
Hypothèse de RiemannEn mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Vecteur aléatoireUn vecteur aléatoire est aussi appelé variable aléatoire multidimensionnelle. Un vecteur aléatoire est une généralisation à n dimensions d'une variable aléatoire réelle. Alors qu'une variable aléatoire réelle est une fonction qui à chaque éventualité fait correspondre un nombre réel, le vecteur aléatoire est une fonction X qui à chaque éventualité fait correspondre un vecteur de : où ω est l'élément générique de Ω, l'espace de toutes les éventualités possibles. Les applications X, ...
Fonction caractéristique (probabilités)En mathématiques et plus particulièrement en théorie des probabilités et en statistique, la fonction caractéristique d'une variable aléatoire réelle est une quantité qui détermine de façon unique sa loi de probabilité. Si cette variable aléatoire a une densité, alors la fonction caractéristique est la transformée de Fourier inverse de la densité. Les valeurs en zéro des dérivées successives de la fonction caractéristique permettent de calculer les moments de la variable aléatoire.