Groupe spécial unitaireEn mathématiques, le groupe spécial unitaire de E, où E est un espace hermitien, est le groupe des automorphismes unitaires de E de déterminant 1, la loi de composition interne considérée étant la composition d’automorphismes. Il est noté SU(E). C’est un sous-groupe de U(E), le groupe unitaire des automorphismes de E. De manière générale, on peut définir le groupe spécial unitaire d'une forme sesquilinéaire hermitienne complexe non dégénérée, ou d'une forme sesquilinéaire hermitienne ou antihermitienne non dégénérée sur un espace vectoriel de dimension finie sur certains corps (commutatifs ou non) relativement à une involution.
Groupe unitaireEn mathématiques, le groupe unitaire de degré n sur un corps K relativement à un anti automorphisme involutif (cf. Algèbre involutive) σ de K (par exemple K le corps des nombres complexes et σ la conjugaison) est le groupe des matrices carrées A d'ordre n à coefficients dans K, qui sont unitaires pour σ, c'est-à-dire telles Aσ(tA) = In. Plus généralement, on peut définir le groupe unitaire d'une forme hermitienne ou antihermitienne non dégénérée φ sur un espace vectoriel sur un corps comme étant le groupe des éléments f de GL(E) tels que φ(f(x), f(y)) = φ(x, y) quels que soient les vecteurs x et y de E.
Extension de groupesEn mathématiques, plus précisément en théorie des groupes, une extension de groupes est une manière de décrire un groupe en termes de deux groupes « plus petits ». Plus précisément, une extension d'un groupe Q par un groupe N est un groupe G qui s'insère dans une suite exacte courte Autrement dit : G est une extension de Q par N si (à isomorphismes près) N est un sous-groupe normal de G et Q est le groupe quotient G/N. L'extension est dite centrale si N est inclus dans le centre de G.
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Groupe spécial linéaireEn mathématiques, le groupe spécial linéaire de degré n sur un corps commutatif K est le groupe SL(K) des matrices carrées d'ordre n sur K dont le déterminant est égal à 1. Plus intrinsèquement, le groupe spécial linéaire d'un espace vectoriel E de dimension finie sur K est le groupe SL(E) des éléments du groupe général linéaire GL(E) dont le déterminant est égal à 1. Cette définition admet différentes généralisations : une, immédiate, sur un anneau commutatif et deux variantes sur des corps non nécessairement commutatifs, dont l'une sur des corps qui sont de dimension finie sur leur centre.
Groupe compactEn mathématiques, et plus particulièrement en analyse harmonique abstraite, un groupe compact est un groupe topologique dont l'espace topologique sous-jacent est compact. Les groupes compacts sont des groupes unimodulaires, dont la compacité simplifie l'étude. Ces groupes comprennent notamment les groupes finis et les groupes de Lie compacts. Tout groupe compact est limite projective de groupes de Lie compacts. Tout groupe discret fini est un groupe compact. En effet, tout espace discret fini est compact.
Groupe général linéaireEn mathématiques, le groupe général linéaire — ou groupe linéaire — de degré n d’un corps commutatif K (ou plus généralement d'un anneau commutatif unifère) est le groupe des matrices inversibles de taille n à coefficients dans K, muni du produit matriciel. On le note GL(K) ou GL(n, K) et il représente les automorphismes de l’espace vectoriel K. Ce groupe est non abélien dès lors que n > 1. Lorsque K est un corps commutatif, l’ensemble GL(n, K) est en outre un ouvert pour la topologie de Zariski.
Semisimple Lie algebraIn mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper ideals). Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of characteristic 0. For such a Lie algebra , if nonzero, the following conditions are equivalent: is semisimple; the Killing form, κ(x,y) = tr(ad(x)ad(y)), is non-degenerate; has no non-zero abelian ideals; has no non-zero solvable ideals; the radical (maximal solvable ideal) of is zero.
Real form (Lie theory)In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0: The notion of a real form can also be defined for complex Lie groups. Real forms of complex semisimple Lie groups and Lie algebras have been completely classified by Élie Cartan. Using the Lie correspondence between Lie groups and Lie algebras, the notion of a real form can be defined for Lie groups.
Espace vectoriel symplectiqueEn algèbre, un espace vectoriel est symplectique quand on le munit d'une forme symplectique, c'est-à-dire une forme bilinéaire alternée et non dégénérée. L'étude de ces espaces vectoriels présente quelques ressemblances avec l'étude des espaces préhilbertiens réels puisqu'on y définit également la notion d'orthogonalité. Mais il y a de fortes différences, ne serait-ce que parce que tout vecteur est orthogonal à lui-même. Les espaces vectoriels symplectiques servent de modèles pour définir les variétés symplectiques, étudiées en géométrie symplectique.