Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Transformation canoniqueEn mécanique hamiltonienne, une transformation canonique est un changement des coordonnées canoniques (q, p, t) → (Q, P, t) qui conserve la forme des équations de Hamilton, sans pour autant nécessairement conserver le Hamiltonien en lui-même. Les transformations canoniques sont utiles pour les équations de Hamilton-Jacobi (une technique utile pour calculer les quantités conservées) et le théorème de Liouville (à la base de la mécanique statistique classique).
Coordonnées canoniquesEn mathématiques et en mécanique classique, les coordonnées canoniques sont des ensembles de coordonnées sur l'espace des phases qui peuvent être utilisées pour décrire un système physique à un moment donné dans le temps. Les coordonnées canoniques sont utilisées dans la formulation hamiltonienne de la mécanique classique. Un concept étroitement lié apparaît également en mécanique quantique ; voir le théorème de Stone-von Neumann et les relations de commutation canoniques pour plus de détails.
Transformation de LegendreLa transformation de Legendre est une opération mathématique qui, schématiquement, transforme une fonction définie par sa valeur en un point en une fonction définie par sa tangente. Elle tire son nom du mathématicien Adrien-Marie Legendre. Les cas classiques d'utilisation de la transformation de Legendre se rencontrent en thermodynamique et en mécanique lagrangienne. En thermodynamique, elle permet de calculer le potentiel thermodynamique adapté à des conditions particulières.
Espace vectoriel symplectiqueEn algèbre, un espace vectoriel est symplectique quand on le munit d'une forme symplectique, c'est-à-dire une forme bilinéaire alternée et non dégénérée. L'étude de ces espaces vectoriels présente quelques ressemblances avec l'étude des espaces préhilbertiens réels puisqu'on y définit également la notion d'orthogonalité. Mais il y a de fortes différences, ne serait-ce que parce que tout vecteur est orthogonal à lui-même. Les espaces vectoriels symplectiques servent de modèles pour définir les variétés symplectiques, étudiées en géométrie symplectique.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Fibré cotangentEn géométrie différentielle, le fibré cotangent associé à une variété différentielle M est le fibré vectoriel T*M de son fibré tangent TM : en tout point m de M, l' est défini comme l'espace dual de l'espace tangent : Les sections lisses du fibré cotangent sont les 1-formes différentielles, l'une d'entre elles étant remarquable et appelée 1-forme tautologique (ou 1-forme de Poincaré, ou 1-forme de Liouville, ou 1-forme canonique, ou potentiel symplectique). Sa dérivée extérieure donne une 2-forme symplectique canonique.
Fibré tangent unitaireIn Riemannian geometry, the unit tangent bundle of a Riemannian manifold (M, g), denoted by T1M, UT(M) or simply UTM, is the unit sphere bundle for the tangent bundle T(M). It is a fiber bundle over M whose fiber at each point is the unit sphere in the tangent bundle: where Tx(M) denotes the tangent space to M at x. Thus, elements of UT(M) are pairs (x, v), where x is some point of the manifold and v is some tangent direction (of unit length) to the manifold at x.
Mécanique hamiltonienneLa mécanique hamiltonienne est une reformulation de la mécanique newtonienne. Son formalisme a facilité l'élaboration théorique de la mécanique quantique. Elle a été formulée par William Rowan Hamilton en 1833 à partir des équations de Lagrange, qui reformulaient déjà la mécanique classique en 1788. En mécanique lagrangienne, les équations du mouvement d'un système à N degrés de liberté dépendent des coordonnées généralisées et des vitesses correspondantes , où .
Variété symplectiqueEn mathématiques, une variété symplectique est une variété différentielle munie d'une forme différentielle de degré 2 fermée et non dégénérée, appelée forme symplectique. L'étude des variétés symplectiques relève de la géométrie symplectique. Les variétés symplectiques apparaissent dans les reformulations analytiques abstraites de la mécanique classique utilisant la notion de fibré cotangent d'une variété, notamment dans la reformulation hamiltonnienne, où les configurations d'un système forment une variété dont le fibré cotangent décrit l'espace des phases du système.