Problème des contactsEn mathématiques, et plus précisément en géométrie, le problème des contacts, appelé également problème d'Apollonius ou problème des trois cercles, est un des grands problèmes de l'Antiquité grecque. Il s'agit de trouver un cercle tangent à trois cercles donnés de rayons différents. Ce problème a été présenté par Pappus comme étant le dixième et le plus difficile du Traité des contacts, un des ouvrages perdus d'Apollonius. En effet, il faudra attendre 1600 pour sa résolution par François Viète qui montrera qu'il admet au maximum huit solutions.
Quadrilatère circonscriptiblevignette|300x300px| Un quadrilatère circonscriptible avec son cercle inscrit En géométrie euclidienne, un quadrilatère circonscriptible (ou quadrilatère tangentiel) est un quadrilatère convexe pour lequel il existe un cercle inscrit, c'est-à-dire un cercle situé à l'intérieur du quadrilatère et tangent à chacun de ses quatre côtés. On dit alors que le quadrilatère circonscrit son cercle inscrit. Un quadrilatère circonscriptible est un cas particulier de polygone circonscriptible.
Angle inscrit dans un demi-cercleLe théorème de géométrie qui affirme que l'angle inscrit dans un demi-cercle est droit, est appelé Théorème de Thalès en Allemagne (Satz des Thales) à partir de la toute fin du , puis dans plusieurs pays, mais assez rarement en France où, à partir à peu près de la même époque, le « théorème de Thalès » désigne un théorème tout autre, sur la proportionnalité des segments découpés sur deux droites sécantes par des droites parallèles.
ParallélogrammeEn géométrie, un parallélogramme est un quadrilatère dont les segments diagonaux se coupent en leur milieu. En géométrie purement affine, un quadrilatère (ABCD) est un parallélogramme (au sens défini en introduction) si et seulement s'il satisfait l'une des propriétés équivalentes suivantes : les vecteurs et sont égaux ; les vecteurs et sont égaux. Si de plus les quatre sommets sont trois à trois non alignés, ces propriétés sont aussi équivalentes à la suivante : les côtés opposés sont parallèles deux à deux, c'est-à-dire : (AB) // (CD) et (AD) // (BC).
Cercles inscrit et exinscrits d'un triangleÉtant donnés trois points non alignés A, B et C du plan, il existe quatre cercles tangents aux trois droites (AB), (AC) et (BC). Ce sont le cercle inscrit (celui qui est intérieur au triangle) et les cercles exinscrits du triangle ABC. Bissectrice Un cercle tangent aux trois droites (AB), (BC), (CA) doit posséder un centre équidistant de ces trois droites. Or l'ensemble des points équidistants de deux droites sécantes (d1) et (d2) forme deux droites perpendiculaires, constituées des quatre demi-droites bissectrices chacune d'un des quatre secteurs angulaires construits par les droites (d1) et (d2), et appelées bissectrices des droites (d1) et (d2).
Inversion géométriqueEn géométrie, l'inversion géométrique est l'étude de l'inversion, une transformation du plan euclidien qui envoie des cercles ou des lignes vers d'autres cercles ou lignes et qui préserve les angles entre les courbes de croisement. De nombreux problèmes difficiles en géométrie deviennent beaucoup plus faciles à résoudre lorsqu'une inversion est appliquée. L'inversion semble avoir été découverte par un certain nombre de personnes à la même époque, dont Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs et Ingram (1842-3) et Kelvin (1845).
CarréEn géométrie euclidienne, un carré est un quadrilatère convexe à quatre côtés de même longueur avec quatre angles droits. C’est donc un polygone régulier, qui est à la fois un losange, un rectangle, et par conséquent aussi un parallélogramme particulier. Dans le plan, un carré est invariant par quatre symétries axiales, par deux rotations d’angle droit et par une symétrie centrale par rapport à l’intersection de ses diagonales. Les premières représentations du carré datent de la préhistoire.