Théorème des fonctions implicitesEn mathématiques, le théorème des fonctions implicites est un résultat de géométrie différentielle. Certaines courbes planes sont définies par une équation cartésienne, c'est-à-dire une équation de la forme f(x, y) = 0, où x et y décrivent les nombres réels. Le théorème indique que si la fonction f est suffisamment régulière au voisinage d'un point de la courbe, il existe une fonction φ de R dans R au moins aussi régulière que f telle que localement, la courbe et le graphe de la fonction φ sont confondus.
Point d'inflexionthumb|Représentation graphique de la fonction x ↦ x montrant un point d'inflexion aux coordonnées (0, 0). thumb|Point d'inflexion de la fonction arc tangente. En mathématiques, et plus précisément en analyse et en géométrie différentielle, un point d'inflexion est un point où s'opère un changement de concavité d'une courbe plane. En un tel point, la tangente traverse la courbe. C'est pourquoi les points d'inflexion, quand on arrive à les déterminer explicitement, aident à bien représenter l'allure de la courbe.
Matrice hessienneEn mathématiques, la matrice hessienne (ou simplement le hessien ou la hessienne) d'une fonction numérique est la matrice carrée, notée , de ses dérivées partielles secondes. Etant donnée une fonction à valeurs réelles dont toutes les dérivées partielles secondes existent, le coefficient d'indice de la matrice hessienne vaut . Autrement dit, On appelle discriminant hessien (ou simplement hessien) le déterminant de cette matrice. Le terme « hessien » a été introduit par James Joseph Sylvester, en hommage au mathématicien allemand Ludwig Otto Hesse.
Submersion (mathématiques)En topologie différentielle – une branche des mathématiques –, une submersion ou application submersive entre deux variétés différentielles est une application différentiable dont la différentielle en tout point est surjective. Soient V et W deux variétés différentielles, f une application différentiable de V dans W et x un point de V. On dit que f est une submersion au point x si l'application linéaire tangente Tf(x) est surjective, autrement dit (W étant supposée de dimension finie) : si le rang de Tf(x) est égal à la dimension de W.
Fonction impliciteEn mathématiques, une équation entre différentes variables où une variable n'est pas explicitée en fonction des autres est appelée une équation implicite. Une fonction implicite est une fonction qui se déduit implicitement d'une telle équation. Plus précisément si f est une fonction de E × F dans G, où E, F et G sont des espaces vectoriels normés ou plus simplement des intervalles de R, l'équation f(x,y) = 0 définit une fonction implicite si l'on peut exprimer une des variables en fonction de l'autre pour tous les couples (x,y) vérifiant l'équation.
Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Point de rebroussementEn mathématiques, on appelle point de rebroussement, fronce (selon René Thom) ou parfois , selon la terminologie anglaise, un type particulier de point singulier sur une courbe. Dans le cas d'une courbe admettant une équation , les points de rebroussement ont les propriétés : La matrice hessienne (la matrice des dérivées secondes) a un déterminant nul. L'étude de la géométrie d'une courbe, algébrique ou analytique, au voisinage d'un tel point, repose notamment sur la notion d'éclatement.
Ligne de niveauSoit f une fonction à valeurs réelles, une ligne de niveau est un ensemble { (x1,...,xn) | f(x1,...,xn) = c } ; c étant une constante. C'est en fait le sous-ensemble de l'ensemble de définition sur lequel f prend une valeur donnée. Théorème : le gradient de f est perpendiculaire en tout point à la ligne de niveau de f en ce point. Il s'agit d'un résultat important. Pour mieux le comprendre, imaginons que deux randonneurs sont à la même position sur une montagne.
Fonction cubiquevignette|Courbe représentative de la fonction cubique f(x) = (x3 + 3x2 − 6x − 8)/4, qui a 3 racines réelles (où la courbe croise l'axe horizontal — où y = 0) et deux points critiques. En mathématiques, une fonction cubique est une fonction de la forme où a est non nul. L'équation f(x) = 0 est alors une équation cubique. Les solutions de cette équation polynomiale sont appelées zéros de la fonction polynomiale f. vignette|Les racines, les points stationnaires, point d'inflexion et la concavité d'un polynôme cubique (ligne noire) et ses dérivées première et seconde (rouge et bleu).
Théorie de MorseEn mathématiques, et plus précisément en topologie différentielle, la théorie de Morse est un ensemble de techniques et de méthodes mises en place durant la seconde moitié du , permettant d'étudier la topologie d'une variété différentielle en analysant les lignes de niveau d'une fonction définie sur cette variété. Le premier résultat d'importance est le lemme de Morse, qui donne le lien entre points critiques d'une fonction suffisamment générale et modification de la topologie de la variété.