Racine de l'unitévignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.
Entier sans facteur carrévignette|Les nombres qui n'ont pas été rayé sont tous les entiers sans facteur carré jusqu'à 120 En mathématiques et plus précisément en arithmétique, un entier sans facteur carré (souvent appelé, par tradition ou commodité quadratfrei ou squarefree) est un entier relatif qui n'est divisible par aucun carré parfait, excepté 1. Par exemple, 10 est sans facteur carré mais 18 ne l'est pas, puisqu'il est divisible par 9 = 3. Les dix plus petits nombres de la des entiers positifs sans facteur carré sont 1, 2, 3, 5, 6, 7, 10, 11, 13, 14.
Fonction de MertensEn théorie des nombres, la fonction de Mertens est où μ est la fonction de Möbius. Moins formellement, M(n) est le nombre d'entiers sans facteur carré inférieurs ou égaux à n et dont le nombre de facteurs premiers est pair, moins le nombre d'entiers sans facteur carré inférieurs ou égaux à n et dont le nombre de facteurs premiers est impair. Puisque la fonction de Möbius ne prend que les valeurs –1, 0 et +1, il est évident qu'il n'existe pas de x tel que |M(x)| > x.
Incidence algebraIn order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory. A locally finite poset is one in which every closed interval [a, b] = {x : a ≤ x ≤ b} is finite.
Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Fonction de compte des nombres premiersEn mathématiques, la fonction de compte des nombres premiers est la fonction comptant le nombre de nombres premiers inférieurs ou égaux à un nombre réel x. Elle est notée π(x) (à ne pas confondre avec la constante π). L’image ci-contre illustre la fonction π(n) pour les valeurs entières de la variable. Elle met en évidence les augmentations de 1 que la fonction subit à chaque fois que x est égal à un nombre premier. Soit l'ensemble des nombres premiers et un nombre réel.
Produit eulérienEn mathématiques, et plus précisément en théorie analytique des nombres, un produit eulérien est un développement en produit infini, indexé par les nombres premiers. Il permet de mesurer la répartition des nombres premiers et est intimement lié à la fonction zêta de Riemann. Il est nommé en l'honneur du mathématicien suisse Leonhard Euler. Euler cherche à évaluer la répartition des nombres premiers p = 2, p = 3, ....
Fonction complètement multiplicativeEn théorie des nombres, les fonctions définies sur l'ensemble des entiers naturels non nuls et qui respectent les produits sont appelées fonctions complètement multiplicatives ou fonctions totalement multiplicatives. Elles font partie des fonctions multiplicatives, qui ne respectent que les produits de nombres premiers entre eux. En dehors de la théorie des nombres, le terme « fonction multiplicative » est souvent considéré comme synonyme de « fonction complètement multiplicative » tel que défini dans cet article.
Série de LambertEn mathématiques, une série de Lambert, nommée ainsi en l'honneur du mathématicien Jean-Henri Lambert, est une série génératrice prenant la forme Elle peut être resommée formellement en développant le dénominateur : où les coefficients de la nouvelle série sont donnés par la convolution de Dirichlet de (a) avec la fonction constante 1(n) = 1 : La série de Lambert de certaines fonctions multiplicatives se calcule facilement ; par exemple : la série de Lambert de la fonction de Möbius μ est la série génératri
Unit functionIn number theory, the unit function is a completely multiplicative function on the positive integers defined as: It is called the unit function because it is the identity element for Dirichlet convolution. It may be described as the "indicator function of 1" within the set of positive integers. It is also written as u(n) (not to be confused with μ(n), which generally denotes the Möbius function).