Injection (mathématiques)Une application f est dite injective ou est une injection si tout élément de son ensemble d'arrivée a au plus un antécédent par f, ce qui revient à dire que deux éléments distincts de son ensemble de départ ne peuvent pas avoir la même par f. Lorsque les ensembles de départ et d'arrivée de f sont tous les deux égaux à la droite réelle R, f est injective si et seulement si son graphe intersecte toute droite horizontale en au plus un point. Si une application injective est aussi surjective, elle est dite bijective.
PrimitiveEn mathématiques, une primitive d’une fonction réelle (ou holomorphe) f est une fonction F dont f est la dérivée : Il s’agit donc d’un antécédent pour l’opération de dérivation. La détermination d’une primitive sert d’abord au calcul des intégrales de fonctions continues sur un segment, en application du théorème fondamental de l'analyse.
Logarithme binaireEn mathématiques, le logarithme binaire (log2 n) est le logarithme de base 2. C’est la fonction réciproque de la fonction puissance de deux : x ↦ 2x. Le logarithme binaire de x est la puissance à laquelle le nombre 2 doit être élevé pour obtenir la valeur x, soit : . Ainsi, le logarithme binaire de 1 est 0, le logarithme binaire de 2 est 1, le logarithme binaire de 4 est 2, le logarithme binaire de 8 est 3. On le ld () (pour logarithmus dualis), mais la norme ISO 80000-2 indique que log2(x) devrait être symbolisé par lb (x).
Fraction continue généraliséeEn mathématiques, une fraction continue généralisée est une expression de la forme : comportant un nombre fini ou infini d'étages. C'est donc une généralisation des fractions continues simples puisque dans ces dernières, tous les a sont égaux à 1. Une fraction continue généralisée est une généralisation des fractions continues où les numérateurs et dénominateurs partiels peuvent être des complexes quelconques : où an (n > 0) sont les numérateurs partiels et les bn les dénominateurs partiels.
Intérêts composésUn capital est placé à intérêts composés lorsque les intérêts de chaque période sont incorporés au capital pour l'augmenter progressivement et porter intérêts à leur tour. C'est une notion antagoniste à celle d'intérêts simples, où les intérêts ne sont pas réinvestis pour devenir à leur tour porteurs d'intérêts. Pour calculer des intérêts composés annuellement, il faut utiliser une suite géométrique, dont la formule est : où est la valeur finale, la valeur initiale, le taux d'intérêt sur une période, et le nombre de périodes (d'années, semestres, trimestres, etc.
Table numériqueEn mathématiques, une table numérique est un tableau de nombres permettant de mettre en relation deux quantités. Elle se présente en général sous forme d'un tableau à deux colonnes (voire plus). Dans la première colonne apparait la quantité de référence, la variable, variant selon un pas fréquemment fixe. La seconde colonne est destinée à donner les valeurs correspondantes de la seconde quantité liée à la première. Une troisième colonne est souvent présente donnant la table des différences entre deux valeurs successives de la seconde quantité.
Secteur hyperboliquedroite|200x200px En géométrie, un secteur hyperbolique est une région du plan cartésien délimitée par une hyperbole et deux rayons partant de l'origine vers celle-ci. Par exemple, les deux points et sur l'hyperbole équilatère , ou la région correspondante lorsque cette hyperbole est remise à l'échelle et que son orientation est modifiée par une rotation laissant le centre à l'origine, comme avec l'hyperbole unité. Un secteur hyperbolique en position standard part de et . Les secteurs hyperboliques sont à la base des fonctions hyperboliques.
Quadrature (mathématiques)En mathématiques, la quadrature d'une surface est la recherche d'un carré ayant la même aire que la surface en question. Si dans le langage courant le terme de quadrature revêt le sens d'opération impossible, cela provient du fait que la quadrature la plus célèbre (la quadrature du cercle) se révèle impossible à réaliser à la règle et au compas. Mais, en mathématiques, le terme de quadrature va prendre très rapidement le sens de calcul d'aire.
Charles HermiteCharles Hermite (1822-1901) est un mathématicien français. Ses travaux concernent surtout la théorie des nombres, les formes quadratiques, les polynômes orthogonaux, les fonctions elliptiques et les équations différentielles. Plusieurs entités mathématiques sont qualifiées d'hermitiennes en son honneur. Il est aussi connu comme l'un des premiers à utiliser les matrices. Il fut le premier à montrer, en 1873, qu'une constante naturelle de l'analyse, en l'occurrence le nombre e, base des logarithmes naturels, est transcendant.
Identité d'EulerEn mathématiques, l'identité d'Euler est une relation entre plusieurs constantes fondamentales et utilisant les trois opérations arithmétiques d'addition, multiplication et exponentiation : où la base e du logarithme naturel représente l'analyse, l'unité imaginaire i représente l'algèbre, la constante d'Archimède π représente la géométrie, . Elle est nommée d'après le mathématicien Leonhard Euler qui la fait apparaître dans son Introductio, publié à Lausanne en 1748.