Conditionnement (analyse numérique)En analyse numérique, une discipline des mathématiques, le conditionnement mesure la dépendance de la solution d'un problème numérique par rapport aux données du problème, ceci afin de contrôler la validité d'une solution calculée par rapport à ces données. En effet, les données d'un problème numérique dépendent en général de mesures expérimentales et sont donc entachées d'erreurs. Il s'agit le plus souvent d'une quantité numérique. De façon plus générale, on peut dire que le conditionnement associé à un problème est une mesure de la difficulté de calcul numérique du problème.
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Matrice unitaireEn algèbre linéaire, une matrice carrée U à coefficients complexes est dite unitaire si elle vérifie les égalités : où la matrice adjointe de U est notée U* (ou U en physique, et plus particulièrement en mécanique quantique) et I désigne la matrice identité. L'ensemble des matrices unitaires de taille n forme le groupe unitaire U(n). Les matrices unitaires carrées à coefficients réels sont les matrices orthogonales.
Matrices semblablesEn mathématiques, deux matrices carrées A et B sont dites semblables s'il existe une matrice inversible P telle que . La similitude est une relation d'équivalence. Deux matrices sont semblables si et seulement si elles représentent le même endomorphisme d'un espace vectoriel dans deux bases (éventuellement) différentes. Il ne faut pas confondre la notion de matrices semblables avec celle de matrices équivalentes. En revanche, si deux matrices sont semblables, alors elles sont équivalentes.
Quotient de RayleighEn mathématiques, pour une matrice hermitienne A et un vecteur x non nul, le quotient de Rayleigh est l’expression scalaire définie par où x désigne le vecteur adjoint de x. Pour une matrice symétrique à coefficients réels, le vecteur x est simplement son transposé x. Dans les deux cas, le quotient de Rayleigh fournit une valeur réelle qui renseigne sur le spectre de la matrice par les deux propriétés fondamentales suivantes : il atteint un point critique (extremum ou point-selle) au voisinage des vecteurs propres de la matrice ; appliqué à un vecteur propre, le quotient de Rayleigh fournit la valeur propre correspondante.
Agrandissement et réductionEn géométrie, l’agrandissement et la réduction sont les deux cas de transformations géométriques d'une figure en multipliant ses dimensions par un nombre appelé rapport : ce nombre est supérieur à 1 dans le cas d’un agrandissement, inférieur dans le cas d’une réduction. La figure obtenue est ainsi semblable à l’ancienne, et si les deux apparaissent dans le même plan, elles s’obtiennent chacune par une homothétie sur la figure de l’autre. C’est le cas par exemple d’une configuration de Thalès.
Équation de PoissonEn analyse vectorielle, l'équation de Poisson (ainsi nommée en l'honneur du mathématicien et physicien français Siméon Denis Poisson) est l'équation aux dérivées partielles elliptique du second ordre suivante : où est l'opérateur laplacien et est une distribution généralement donnée. Sur un domaine borné de et de frontière régulière, le problème de trouver à partir de et satisfaisant certaines conditions aux limites appropriées est un problème bien posé : la solution existe et est unique.
Séparation des variablesEn mathématiques, la séparation des variables constitue l'une des méthodes de résolution des équations différentielles partielles et ordinaires, lorsque l'algèbre permet de réécrire l'équation de sorte que chacune des deux variables apparaisse dans un membre distinct de l'équation. Supposons qu'une équation différentielle puisse être écrite de la forme suivante et pour tout x : que l'on peut écrire plus simplement en identifiant : Tant que h(y) ≠ 0, on peut réécrire les termes de l'équation pour obtenir : séparant donc les variables x et y.
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.
Matrice triangulairevignette|algèbre linéaire En algèbre linéaire, une matrice triangulaire est une matrice carrée dont tous les coefficients sont nuls d’un côté ou de l’autre de la diagonale principale. C’est en particulier le cas si la matrice est diagonale. Une matrice est triangulaire stricte si elle est triangulaire et que tous ses coefficients diagonaux sont nuls. Dans ce qui suit, on considérera un anneau unitaire R non forcément commutatif, des R-modules à gauche et des R-modules à droite.