Espace totalement discontinuEn mathématiques, plus précisément en topologie, un espace totalement discontinu est un espace topologique qui est « le moins connexe possible » au sens où il n'a pas de partie connexe non triviale : dans tout espace topologique, l'ensemble vide et les singletons sont connexes ; dans un espace totalement discontinu, ce sont les seules parties connexes. Un exemple populaire d'espace totalement discontinu est l'ensemble de Cantor. Un autre exemple, important en théorie algébrique des nombres, est le corps Qp des nombres p-adiques.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Droite de SorgenfreyEn mathématiques, la droite de Sorgenfrey — souvent notée S — est la droite réelle R munie de la topologie (plus fine que la topologie usuelle) dont une base est constituée des intervalles semi-ouverts de la forme [a, b[ (pour a et b réels tels que a < b). Robert Sorgenfrey l'a définie pour démontrer que le produit de deux espaces paracompacts n'est pas toujours paracompact ; c'est aussi un exemple simple d'espace normal dont le carré n'est pas normal.
Topologie induiteEn mathématiques, la topologie induite est une topologie définie sur toute partie Y d'un espace topologique X : c'est la trace sur Y de la topologie sur X. Autrement dit, l'ensemble des ouverts de Y (muni de la topologie induite) est : {O⋂Y | O ouvert de X}. Ou encore : les voisinages dans Y d'un point sont les traces sur Y de ses voisinages dans X. On dit alors que Y est un sous-espace de X. La topologie induite est souvent sous-entendue dans les énoncés de topologie : par exemple, lorsque l'on a un espace topologique X donné, une partie Y de X sera dite compacte si elle est compacte pour la topologie induite par X sur Y.
Fermé (topologie)En mathématiques, dans un espace topologique E, un fermé est un sous-ensemble de E dont le complémentaire est un ouvert. Toute réunion d'une famille finie de fermés est un fermé (y compris l'ensemble vide ∅, qui est — par définition — la réunion de la famille vide). Toute intersection d'une famille (finie ou infinie) de fermés est un fermé (y compris l'espace E tout entier, qui est — par convention dans ce contexte — l'intersection de la famille vide).
Topologie discrèteEn mathématiques, plus précisément en topologie, la topologie discrète sur un ensemble est une structure d'espace topologique où, de façon intuitive, tous les points sont « isolés » les uns des autres. Soit X un ensemble. L'ensemble des parties de X définit une topologie sur X appelée topologie discrète. X muni de cette topologie est alors appelé espace discret. On dit qu'une partie A d'un espace topologique X est un ensemble discret lorsque la topologie induite sur A est la topologie discrète.
Topologie de la droite réellethumb|Richard Dedekind (1831 - 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l'ensemble des nombres réels, des définitions précises aux notions de limite et de continuité. Historiquement, ces notions se sont développées autour de la notion de nombre (approcher des nombres comme la racine carrée de deux ou pi par d'autres plus « maniables ») et de la géométrie de la droite (à laquelle l'espace topologique des nombres réels peut être assimilé), du plan et de l'espace usuels.
Propriété topologiqueEn topologie et dans les domaines connexes des mathématiques, une propriété topologique (ou invariant topologique) est une propriété sur un espace topologique qui reste invariant sous l'application d'homéomorphismes. C'est-à-dire que chaque fois qu'un espace topologique X possède cette propriété, chaque espace homéomorphe à X possède également cette propriété. De manière informelle, une propriété topologique est une propriété qui peut entièrement être exprimée à l'aide d'ensemble ouverts.
Adhérence (mathématiques)En topologie, l'adhérence d'une partie d'un espace topologique est le plus petit ensemble fermé contenant cette partie. Lorsque l'espace est métrisable, c'est aussi l'ensemble des limites de suites convergentes à valeurs dans cette partie. Dans un espace topologique E, l'adhérence d'une partie X, notée , est le « plus petit » (au sens de l'inclusion) fermé contenant X. L'existence d'un tel fermé est claire : il existe au moins un fermé contenant X, à savoir l'espace E lui-même ; d'autre part, l'intersection de tous les fermés contenant X est un fermé contenant X, et est le plus petit ayant cette propriété.
Frontière (topologie)En topologie, la frontière d'un ensemble (aussi appelé parfois "le bord d'un ensemble") est constituée des points qui, de façon intuitive, sont « situés au bord » de cet ensemble, c’est-à-dire qui peuvent être « approchés » à la fois par l'intérieur et l'extérieur de cet ensemble. Soit S un sous-ensemble d'un espace topologique (E, T).