Foncteur dérivéEn mathématiques, certains foncteurs peuvent être dérivés pour obtenir de nouveaux foncteurs liés de manière naturelle par des morphismes à ceux de départs. Cette notion abstraite permet d'unifier des constructions concrètes intervenant dans de nombreux domaines des mathématiques. Elle n'est pas liée à la notion de dérivation en analyse. La notion de foncteur dérivé est conçue pour donner un cadre général aux situations où une suite exacte courte donne naissance à une suite exacte longue.
Groupe alternéEn mathématiques, et plus précisément en théorie des groupes, le groupe alterné de degré n, souvent noté An, est un sous-groupe distingué du groupe symétrique des permutations d'un ensemble fini à n éléments. Ce sous-groupe est constitué des permutations produits d'un nombre pair de transpositions. Une transposition est une permutation qui échange deux éléments et fixe tous les autres. Il existe un groupe alterné pour chaque entier n supérieur ou égal à 2 ; il se note habituellement An (ou parfois en écriture Fraktur) et possède n!/2 éléments.
Suite spectraleEn algèbre homologique et en topologie algébrique, une suite spectrale est une suite de modules différentiels (En,dn) tels que En+1 = H(En) = Ker dn / dn est l'homologie de En. Elles permettent donc de calculer des groupes d'homologie par approximations successives. Elles ont été introduites par Jean Leray en 1946. Il y a plusieurs manières en pratique pour obtenir une telle suite. Historiquement, depuis 1950, les arguments des suites spectrales ont été un outil performant pour la recherche, notamment dans la théorie de l'homotopie.
Foncteur ExtLes foncteurs Ext sont les foncteurs dérivés du foncteur Hom. Ils sont d'abord apparus en algèbre homologique, où ils jouent un rôle central par exemple dans le théorème des coefficients universels, mais interviennent aujourd'hui dans de nombreuses branches différentes des mathématiques. Ce foncteur apparaît originellement dans l'étude des extensions de modules, d'où il tire son nom. Soit A une catégorie abélienne. D'après le théorème de plongement de Mitchell, on peut toujours imaginer travailler avec une catégorie de modules.
Espace classifiantEn mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G).
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Emil ArtinEmil Artin ( à Vienne, à Hambourg) est un mathématicien autrichien. Il fait carrière en Allemagne (principalement à Hambourg) et émigre aux États-Unis en 1937. Il fait partie des mathématiciens qui ont donné sa forme moderne à la théorie de Galois. Il est également un des fondateurs de la théorie des tresses. Il a résolu les neuvième et dix-septième problèmes de Hilbert. Il a encadré plus de trente thèses, dont celles de Bernard Dwork, , Serge Lang, John Tate, Hans Julius Zassenhaus, O. Timothy O'Meara et Max Zorn.
Théorème de KünnethEn mathématiques, le théorème de Künneth est un résultat de topologie algébrique qui décrit l'homologie singulière du produit X × Y de deux espaces topologiques, en termes de groupes homologiques singuliers Hi(X, R) et Hj(Y, R). Il tient son nom du mathématicien allemand Hermann Künneth. Si R est supposé être un corps commutatif, alors le résultat est une approximation du cas général : en effet, on n'a plus besoin d'invoquer le foncteur Tor.
Représentation galoisienneLa théorie des représentations galoisiennes est l'application naturelle de la théorie des représentations à la théorie algébrique des nombres. Un module galoisien est un module sur lequel agit un groupe de Galois G. Ces modules seront par exemple des groupes d'unités, des groupes des classes, ou des groupes de Galois eux-mêmes. En théorie algébrique des nombres classique, soit L une extension galoisienne d'un corps de nombres K, et soit G le groupe de Galois correspondant.
Groupe parfaitEn théorie des groupes (mathématiques), un groupe est dit parfait s'il est égal à son dérivé. Dans ce qui suit, le dérivé d'un groupe G sera noté D(G). Si un groupe G est parfait, l'image de G par un homomorphisme est un groupe parfait. En particulier, tout groupe quotient d'un groupe parfait est parfait.En effet, si f est un homomorphisme d'un groupe G (quelconque) dans un autre groupe, on a toujours D(f(G)) = f(D(G)). Si un groupe parfait G est sous-groupe d'un groupe H, il est contenu dans le dérivé de H.