Conjectures de WeilEn mathématiques, les conjectures de Weil, qui sont devenues des théorèmes en 1974, ont été des propositions très influentes à la fin des années 1940 énoncées par André Weil sur les fonctions génératrices (connues sous le nom de fonctions zêta locales) déduites du décompte de nombre de points des variétés algébriques sur les corps finis. Une variété sur « le » corps à q éléments possède un nombre fini de points sur le corps lui-même, et sur chacune de ses extensions finies.
Groupe unitaireEn mathématiques, le groupe unitaire de degré n sur un corps K relativement à un anti automorphisme involutif (cf. Algèbre involutive) σ de K (par exemple K le corps des nombres complexes et σ la conjugaison) est le groupe des matrices carrées A d'ordre n à coefficients dans K, qui sont unitaires pour σ, c'est-à-dire telles Aσ(tA) = In. Plus généralement, on peut définir le groupe unitaire d'une forme hermitienne ou antihermitienne non dégénérée φ sur un espace vectoriel sur un corps comme étant le groupe des éléments f de GL(E) tels que φ(f(x), f(y)) = φ(x, y) quels que soient les vecteurs x et y de E.
Coordonnées homogènesEn mathématiques, et plus particulièrement en géométrie projective, les coordonnées homogènes (ou coordonnées projectives), introduites par August Ferdinand Möbius, rendent les calculs possibles dans l'espace projectif, comme les coordonnées cartésiennes le font dans l'espace euclidien. Les coordonnées homogènes sont largement utilisées en infographie et plus particulièrement pour la représentation de scènes en trois dimensions, car elles sont adaptées à la géométrie projective et elles permettent de caractériser les transformations de l'espace.
Théorème de BézoutLe théorème de Bézout, attribué à Étienne Bézout, affirme que deux courbes algébriques projectives planes de degrés m et n, définies sur un corps algébriquement clos et sans composante irréductible commune, ont exactement mn points d'intersection, comptés avec leur multiplicité. La forme faible du théorème dit que le nombre d'intersections (sans tenir compte des multiplicités) est majoré par . Autrement dit, si sont deux polynômes homogènes à coefficients dans (avec et ) de degrés respectifs et sans facteur commun, alors le système admet au plus solutions dans le plan projectif .
Fibré vectorielEn topologie différentielle, un fibré vectoriel est une construction géométrique ayant une parenté avec le produit cartésien, mais apportant une structure globale plus riche. Elle fait intervenir un espace topologique appelé base et un espace vectoriel modèle appelé fibre modèle. À chaque point de la base est associée une fibre copie de la fibre modèle, l'ensemble formant un nouvel espace topologique : l'espace total du fibré. Celui-ci admet localement la structure d'un produit cartésien de la base par la fibre modèle, mais peut avoir une topologie globale plus compliquée.
Base (topologie)En mathématiques, une base d'une topologie est un ensemble d'ouverts tel que tout ouvert de la topologie soit une réunion d'éléments de cet ensemble. Ce concept est utile parce que de nombreuses propriétés d'une topologie se ramènent à des énoncés sur une de ses bases et beaucoup de topologies sont faciles à définir par la donnée d'une base. Soit (X, T) un espace topologique. Un réseau de T est un ensemble N de parties de X tel que tout ouvert U de T est une réunion d'éléments de N, autrement dit : pour tout point x de U, il existe dans N une partie incluse dans U et contenant x.
Variété algébrique affineEn géométrie algébrique, une variété affine est un modèle local pour les variétés algébriques, c'est-à-dire que celles-ci sont obtenues par recollement de variétés affines. Grossièrement, une variété affine est un ensemble algébrique affine X avec une structure algébrique supplémentaire qui est la donnée de l'anneau des fonctions régulières sur chaque partie ouverte de X. Ensemble algébrique Le point de vue le plus simple pour décrire une variété algébrique affine est l'ensemble des solutions d'un système d'équations polynomiales à coefficients dans un corps commutatif K.
Anneau intègreUn anneau intègre ou anneau d'intégrité est un anneau commutatif unitaire différent de l'anneau nul et qui ne possède aucun diviseur de zéro. Un anneau commutatif unitaire est dit intègre s'il est différent de l'anneau nul (autrement dit : si 1 ≠ 0) et sans diviseur de zéro, c’est-à-dire : En pratique, travailler dans un anneau intègre permet de résoudre des équations produit-nul.
Espace tangentL'espace tangent en un point p d'une variété différentielle M est un espace vectoriel qui intuitivement est l'ensemble de tous les vecteurs-vitesse possibles d'un « mobile » se déplaçant (sans pouvoir la quitter) dans la variété M quand il est en p. Une façon commune en physique de décrire l'espace tangent est de dire que les vecteurs qu'il contient représentent les différences entre ce point et des points de la variété infiniment proches du premier.
Singular point of an algebraic varietyIn the mathematical field of algebraic geometry, a singular point of an algebraic variety V is a point P that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth.