Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Function field of an algebraic varietyIn algebraic geometry, the function field of an algebraic variety V consists of objects which are interpreted as rational functions on V. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions.
Extension séparableEn mathématiques, et plus spécifiquement en algèbre, une extension L d'un corps K est dite séparable si elle est algébrique et si le polynôme minimal de tout élément de L n'admet que des racines simples (dans une clôture algébrique de K). La séparabilité est une des propriétés des extensions de Galois. Toute extension finie séparable satisfait le théorème de l'élément primitif. Les corps dont toutes les extensions algébriques sont séparables (c'est-à-dire les corps parfaits) sont nombreux.
Indépendance algébriqueEn algèbre, l'indépendance algébrique d'un ensemble de nombres, sur un corps commutatif, décrit le fait que ses éléments ne sont pas racines d'un polynôme en plusieurs indéterminées à coefficients dans ce corps. Soient L un corps commutatif, S un sous-ensemble de L et K un sous-corps de L. On dit que S est algébriquement libre sur K, ou que ses éléments sont algébriquement indépendants sur K si, pour tout suite finie (s, ... , s) d'éléments distincts de S et tout polynôme non nul P(X, ...
Degree of a field extensionIn mathematics, more specifically field theory, the degree of a field extension is a rough measure of the "size" of the field extension. The concept plays an important role in many parts of mathematics, including algebra and number theory — indeed in any area where fields appear prominently. Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F].
Corps de fonctionsEn mathématiques, un corps de fonctions est un corps commutatif F de type fini sur un corps de base K. On le note habituellement F/K, ou, si le contexte est clair, seulement F. De façon équivalente un corps de fonctions « à n variables » est une extension finie F d'un corps K(t, ... , t) de fractions rationnelles à n indéterminées. F est alors de degré de transcendance n sur K. Une extension L de k est un corps de fonctions (à n variables) si et seulement si c'est le d'une variété algébrique intègre sur k (de dimension n).
Théorie des nombres transcendantsEn mathématiques, la théorie des nombres transcendants est une branche de la théorie des nombres qui étudie les nombres transcendants (nombres qui ne sont pas des solutions d'une équation polynomiale à coefficients entiers). Un nombre complexe α est dit transcendant si pour tout polynôme non nul P à coefficients entiers, P(α) ≠ 0. Il en est alors de même pour tout polynôme non nul à coefficients rationnels. Plus généralement, la théorie traite de l'indépendance algébrique des nombres. Un ensemble de nombres {α1, α2, .
Élément algébriqueEn théorie des corps un élément d'une extension L d'un corps commutatif K est dit algébrique sur K quand il existe un polynôme non nul à coefficients dans K s'annulant sur cet élément. Un élément qui n'est pas algébrique sur K est dit transcendant sur K. Il s'agit d'une généralisation des notions de nombre algébrique et nombre transcendant : un nombre algébrique est un nombre réel ou complexe, un élément de l'extension C du corps Q des rationnels, qui est algébrique sur Q.
Extension algébriqueEn mathématiques et plus particulièrement en algèbre, une extension algébrique L sur un corps K est une extension de corps dans laquelle tous les éléments sont algébriques sur K c’est-à-dire sont racines d'un polynôme non nul à coefficients dans K. Dans le cas contraire, l'extension est dite transcendante. Cette approche permet dans un premier temps de pallier les insuffisances de certains corps, par exemple celui des nombres réels quant aux solutions des équations polynomiales.
MatroïdeEn mathématiques, et plus particulièrement en combinatoire, un matroïde est une structure introduite comme un cadre général pour le concept d'indépendance linéaire. Elle est donc naturellement liée à l'algèbre linéaire (déjà au niveau du vocabulaire : indépendant, base, rang), mais aussi à la théorie des graphes (circuit, cycle), à l'algorithmique (algorithme glouton), et à la géométrie (pour diverses questions liées à la représentation). La notion a été introduite en 1935 par Whitney. Le mot matroïde provient du mot matrice.