Logarithme naturelLe logarithme naturel ou logarithme népérien, ou encore logarithme hyperbolique jusqu'au , transforme, comme les autres fonctions logarithmes, les produits en sommes. L'utilisation de telles fonctions permet de faciliter les calculs comprenant de nombreuses multiplications, divisions et élévations à des puissances rationnelles. Il est souvent noté ln(). Le logarithme naturel ou népérien est dit de base e car ln(e) = 1. Le logarithme népérien d'un nombre x peut également être défini comme la puissance à laquelle il faut élever e pour obtenir x.
Équation du second degréEn mathématiques, une équation du second degré, ou équation quadratique, est une équation polynomiale de degré 2, c'est-à-dire qu'elle peut s'écrire sous la forme : Dans cette équation, x est l'inconnue les lettres a, b et c représentent les coefficients, avec a différent de 0. a est le coefficient quadratique, b est le coefficient linéaire, et c est un terme constant où le polynome est défini sur .
Coordonnées polairesvignette|upright=1.4|En coordonnées polaires, la position du point M est définie par la distance r et l'angle θ. vignette|upright=1.4|Un cercle découpé en angles mesurés en degrés. Les coordonnées polaires sont, en mathématiques, un système de coordonnées curvilignes à deux dimensions, dans lequel chaque point du plan est entièrement déterminé par un angle et une distance. Ce système est particulièrement utile dans les situations où la relation entre deux points est plus facile à exprimer en termes d’angle et de distance, comme dans le cas du pendule.
Racine de l'unitévignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.
Théorème de Pythagorethumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
Règle à calculLa règle à calcul (ou règle à calculer) est un instrument mécanique qui permet le calcul analogique et sert à effectuer facilement des opérations arithmétiques de multiplication et de division par simple déplacement longitudinal d’un coulisseau gradué. Elle utilise pour cela la propriété des fonctions logarithmes qui transforment un produit en somme et une division en différence. Elle permet également la réalisation d'opérations plus complexes, telles que la détermination de racines carrées ou cubiques et tous les calculs trigonométriques courants.
Virgule flottantevignette|Comme la notation scientifique, le nombre à virgule flottante a une mantisse et un exposant. La virgule flottante est une méthode d'écriture de nombres fréquemment utilisée dans les ordinateurs, équivalente à la notation scientifique en numération binaire. Elle consiste à représenter un nombre par : un signe (égal à −1 ou 1) ; une mantisse (aussi appelée significande) ; et un exposant (entier relatif, généralement borné).
Construction à la règle et au compasEuclide a fondé sa géométrie sur un système d'axiomes qui assure en particulier qu'il est toujours possible de tracer une droite passant par deux points donnés et qu'il est toujours possible de tracer un cercle de centre donné et passant par un point donné. La géométrie euclidienne est donc la géométrie des droites et des cercles, donc de la règle (non graduée) et du compas. L'intuition d'Euclide était que tout nombre pouvait être construit, ou « obtenu », à l'aide de ces deux instruments.
Fonction holomorphevignette|Une grille et son image par f d'une fonction holomorphe. En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.
Moyenne géométriqueEn mathématiques, la moyenne géométrique est un type de moyenne. La moyenne géométrique de deux nombres positifs a et b est le nombre positif c tel que : Cette égalité étant une proportion, ceci justifie l'autre appellation « moyenne proportionnelle » de la moyenne géométrique. vignette|La moyenne géométrique des côtés d'un rectangle est donnée par un carré de même aire. Elle est construite par un cercle tangent aux deux cercles définis par les côtés du rectangle et les séparant.