Concepts associés (13)
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Factorisation de Cholesky
La factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Calcul fonctionnel holomorphe
En mathématiques, et plus précisément en analyse, le calcul fonctionnel holomorphe désigne l'application du calcul fonctionnel aux fonctions holomorphes, c'est-à-dire qu'étant donnés une fonction holomorphe ƒ de la variable complexe z et un opérateur linéaire T, l'objectif est de construire un opérateur f (T) étendant ƒ de manière « naturelle ». Le cas le plus fréquent est celui où T est un opérateur borné sur un espace de Banach.
Covariance matrix
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Norme matricielle
En mathématiques, une norme matricielle est un cas particulier de norme vectorielle, sur un espace de matrices. Dans ce qui suit, K désigne le corps des réels ou des complexes. Certains auteurs définissent une norme matricielle comme étant simplement une norme sur un espace vectoriel M(K) de matrices à m lignes et n colonnes à coefficients dans K. Pour d'autres, une norme matricielle est seulement définie sur une algèbre M(K) de matrices carrées et est une norme d'algèbre, c'est-à-dire qu'elle est de plus sous-multiplicative.
Matrice involutive
In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix A is an involution if and only if A2 = I, where I is the n × n identity matrix. Involutory matrices are all square roots of the identity matrix. This is simply a consequence of the fact that any invertible matrix multiplied by its inverse is the identity. The 2 × 2 real matrix is involutory provided that The Pauli matrices in M(2, C) are involutory: One of the three classes of elementary matrix is involutory, namely the row-interchange elementary matrix.
Matrice identité
En mathématiques, plus précisement en algèbre linéaire, une matrice identité ou matrice unité est une matrice carrée diagonale dont la diagonale principale est remplie de , et dont les autres coefficients valent . Elle peut s'écrire : La matrice identité de taille se note : Il est possible de noter les coefficients de la matrice identité d'ordre avec le delta de Kronecker : avec Les matrices identité sont des matrices unitaires et sont donc inversibles et normales.
Décomposition d'une matrice en éléments propres
En algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Matrice orthogonale
Une matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Norme d'opérateur
En mathématiques, et plus particulièrement en analyse fonctionnelle, une norme d'opérateur ou norme subordonnée est une norme définie sur l'espace des opérateurs bornés entre deux espaces vectoriels normés. Entre deux tels espaces, les opérateurs bornés ne sont autres que les applications linéaires continues. Sur un corps K « valué » (au sens : muni d'une valeur absolue) et non discret (typiquement : K = R ou C), soient E et F deux espaces vectoriels normés respectivement munis des normes ‖ ‖ et ‖ ‖.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.