Sous-groupeUn sous-groupe est un objet mathématique décrit par la théorie des groupes. Dans cet article, (G, ∗) désigne un groupe d'élément neutre e. Dans la pratique, on note la loi interne du sous-groupe avec le même symbole que celui de la loi interne du groupe, c'est-à-dire ∗. Si G est un groupe alors {e} (le groupe réduit à l'élément neutre) et G sont toujours des sous-groupes de G. Ce sont les sous-groupes triviaux de G. On les appelle également les sous-groupes impropres de G.
Opposé (mathématiques)En mathématiques, lopposé d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée additivement. Dans le cas réel, il s'agit du nombre qui, ajouté par x, donne 0. On le note –x. Par exemple : l’opposé de 7 est égal à –7 car 7 + (–7) = 0 l’opposé de -0,3 est 0,3 car –0,3 + 0,3 = 0. Ainsi d’après le dernier exemple, –(–0,3) = 0,3. Plus généralement, si E est un ensemble muni d’une loi interne d’addition associative et commutative, l’opposé d’un élément x de E est le symétrique (s’il existe) de cet élément, et est noté en général –x.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Multiplicatively closed setIn abstract algebra, a multiplicatively closed set (or multiplicative set) is a subset S of a ring R such that the following two conditions hold: for all . In other words, S is closed under taking finite products, including the empty product 1. Equivalently, a multiplicative set is a submonoid of the multiplicative monoid of a ring. Multiplicative sets are important especially in commutative algebra, where they are used to build localizations of commutative rings. A subset S of a ring R is called saturated if it is closed under taking divisors: i.
Generator (mathematics)In mathematics and physics, the term generator or generating set may refer to any of a number of related concepts. The underlying concept in each case is that of a smaller set of objects, together with a set of operations that can be applied to it, that result in the creation of a larger collection of objects, called the generated set. The larger set is then said to be generated by the smaller set. It is commonly the case that the generating set has a simpler set of properties than the generated set, thus making it easier to discuss and examine.
Élément symétriqueEn mathématiques, la notion d'élément symétrique généralise les concepts d'opposé en rapport avec l'addition et d'inverse en rapport avec la multiplication. Soit E un ensemble muni d'une loi de composition interne admettant un élément neutre . Soient deux éléments et de E. Si , est dit élément symétrique à gauche de et est dit élément symétrique à droite de . Si , est dit élément symétrique de .
IdempotenceEn mathématiques et en informatique, l'idempotence signifie qu'une opération a le même effet qu'on l'applique une ou plusieurs fois. Par exemple, la valeur absolue est idempotente : , les deux membres étant égaux à 5. On retrouve ce concept en algèbre générale, en particulier dans la théorie des opérateurs de projection et des opérateurs de clôture, mais aussi en informatique, en particulier en programmation fonctionnelle. Un élément x d'un magma (M, •) est dit idempotent si : x • x = x.
Opération unaireEn mathématiques et en programmation informatique, une opération unaire, aussi appelée une fonction monadique, est une opération à un opérande ou une fonction à un seul argument. Valeur absolue ( |x| ) d'un nombre réel. Opposé ( -x ) d'un nombre réel. Carré ( x2 ) d'un nombre réel. Inverse ( g-1 ) d'un élément d'un groupe. Exponentielle, . Exponentielle de base a, . Dans la famille des langages C, les opérations suivantes sont unaires : Incrément : ++x, x++ Décrément : −−x, x−− Adresse ou référence : &x In
Relation réflexiveEn mathématiques, une relation binaire peut avoir, entre autres propriétés, la réflexivité ou bien l'antiréflexivité (ou irréflexivité). Une relation R sur un ensemble X est dite : réflexive si tout élément de X est R-relié à lui-même :ou encore, si le graphe de R contient la diagonale de X (qui est le graphe de l'égalité) ; antiréflexive (ou irréflexive) si aucun élément de X n'est R-relié à lui-même :ou encore, si son graphe est disjoint de la diagonale de X.
Sous-espace vectoriel engendréDans un espace vectoriel E, le sous-espace vectoriel engendré par une partie A de E est le plus petit sous-espace vectoriel de E contenant A. C'est aussi l'ensemble des combinaisons linéaires de vecteurs de A. Le sous-espace vectoriel engendré par une famille de vecteurs est le plus petit sous-espace contenant tous les vecteurs de cette famille. Une famille de vecteurs ou une partie est dite génératrice de E si le sous-espace qu'elle engendre est l'espace entier E.