Théorie des catégoriesLa théorie des catégories est l'étude des structures mathématiques et de leurs relations. Ce domaine est né du constat de l'abondance de caractéristiques partagées par diverses classes liées à des structures mathématiques. Les catégories sont utilisées dans la plupart des branches mathématiques et dans certains secteurs de l'informatique théorique et en mathématiques de la physique. Elles forment une notion unificatrice.
Topologie algébriqueLa topologie algébrique, anciennement appelée topologie combinatoire, est la branche des mathématiques appliquant les outils de l'algèbre dans l'étude des espaces topologiques. Plus exactement, elle cherche à associer de manière naturelle des invariants algébriques aux structures topologiques associées. La naturalité signifie que ces invariants vérifient des propriétés de fonctorialité au sens de la théorie des catégories. L'idée fondamentale est de pouvoir associer à tout espace topologique des objets algébriques (nombre, groupe, espace vectoriel, etc.
Espace séparéEn mathématiques, un espace séparé, dit aussi espace de Hausdorff, est un espace topologique dans lequel deux points distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome T2 au sein des axiomes de séparation. L'appellation fait référence à Felix Hausdorff, mathématicien allemand et l'un des fondateurs de la topologie, qui avait inclus cette condition dans sa définition originale d'espace topologique.
FoncteurDans la théorie des catégories, un foncteur est une construction transformant les objets et morphismes d'une catégorie en ceux d'une autre catégorie, d'une façon compatible. On parle alors d'une construction fonctorielle ou de fonctorialité. Une telle construction est donc un morphisme entre deux catégories. Historiquement, les foncteurs furent introduits en topologie algébrique, associant aux espaces topologiques et aux applications continues des objets algébriques tels que les groupes d'homotopie et les morphismes de groupes, permettant ainsi un véritable calcul d'invariants caractérisant ces espaces.
Topologie produitEn mathématiques, plus précisément en topologie, la topologie produit est une topologie définie sur un produit d'espaces topologiques. C'est de manière générale la topologie initiale associée aux projections de l'espace produit vers chacun de ses facteurs : autrement dit, c'est la topologie la moins fine rendant continues les projections. Dans le cas d'un produit fini, la topologie produit permet notamment de définir une topologie naturelle sur Rn à partir de celle de R.
Géométrie algébriqueLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
Caractéristique d'EulerEn mathématiques, et plus précisément en géométrie et en topologie algébrique, la caractéristique d'Euler — ou d'Euler-Poincaré — est un invariant numérique, un nombre qui décrit un aspect d'une forme d'un espace topologique ou de la structure de cet espace. Elle est communément notée χ. La caractéristique d'Euler fut définie à l'origine pour les polyèdres et fut utilisée pour démontrer divers théorèmes les concernant, incluant la classification des solides de Platon.
SurjectionEn mathématiques, une surjection ou application surjective est une application pour laquelle tout élément de l'ensemble d'arrivée a au moins un antécédent, c'est-à-dire est d'au moins un élément de l'ensemble de départ. Il est équivalent de dire que l' est égal à l'ensemble d'arrivée. Il est possible d'appliquer l'adjectif « surjectif » à une fonction (voire à une correspondance) dont le domaine de définition n'est pas tout l'ensemble de départ, mais en général le terme « surjection » est réservé aux applications (qui sont définies sur tout leur ensemble de départ), auxquelles nous nous limiterons dans cet article (pour plus de détails, voir le paragraphe « Fonction et application » de l'article « Application »).
Carl Friedrich GaussJohann Carl Friedrich Gauß ( ; traditionnellement transcrit Gauss en français ; Carolus Fridericus Gauss en latin), né le à Brunswick et mort le à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé « le prince des mathématiciens », il est considéré comme l'un des plus grands mathématiciens de tous les temps. La qualité extraordinaire de ses travaux scientifiques était déjà reconnue par ses contemporains.
Voisinage (mathématiques)En mathématiques, dans un espace topologique, un voisinage d'un point est une partie de l'espace qui contient un ouvert qui comprend ce point. C'est une notion centrale dans la description d'un espace topologique. Par opposition aux voisinages, les ensembles ouverts permettent de définir élégamment des propriétés globales comme la continuité en tout point. En revanche, pour les propriétés locales comme la continuité en un point donné ou la limite, la notion de voisinage (et le formalisme correspondant) est plus adaptée.