Concepts associés (26)
Équation polynomiale
En mathématiques, une équation polynomiale, ou équation algébrique, est une équation de la forme : où P est un polynôme. Voici un exemple d'équation simple avec une seule inconnue : Usuellement, le terme équation polynomiale désigne une équation avec une seule inconnue (notée ici x) : où l'entier naturel n et les , appelés coefficients de l’équation, sont connus. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs valeurs dans n’importe quel anneau.
Équation quartique
En mathématiques, une équation quartique est une équation polynomiale de degré 4. Les équations quartiques ont été résolues dès que furent connues les méthodes de résolution des équations du troisième degré. Ont été développées successivement la méthode de Ferrari et la méthode de Descartes. La méthode de Lagrange, décrite ci-dessous, est issue des propriétés des polynômes symétriques construits à partir des n racines d'un polynôme de degré n. La méthode de résolution de l'équation quartique est établie depuis déjà deux siècles par Ludovico Ferrari (1522-1565).
Quartic function
In algebra, a quartic function is a function of the form where a is nonzero, which is defined by a polynomial of degree four, called a quartic polynomial. A quartic equation, or equation of the fourth degree, is an equation that equates a quartic polynomial to zero, of the form where a ≠ 0. The derivative of a quartic function is a cubic function.
Racine de l'unité
vignette|Les racines cinquièmes de l'unité (points bleus) dans le plan complexe. En mathématiques, une racine de l'unité est un nombre complexe dont une puissance entière non nulle vaut 1, c'est-à-dire tel qu'il existe un nombre entier naturel non nul n tel que . Ce nombre est alors appelé racine n-ième de l'unité. Une racine n-ième de l'unité est dite primitive si elle est d'ordre exactement n, c'est-à-dire si n est le plus petit entier strictement positif pour lequel l'égalité est réalisée.
Algèbre
L'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Théorème d'Abel (algèbre)
En mathématiques et plus précisément en algèbre, le théorème d'Abel, parfois appelé théorème d'Abel-Ruffini ou encore théorème de Ruffini, indique que pour tout entier n supérieur ou égal à 5, il n'existe pas de formule générale exprimant « par radicaux » les racines d'un polynôme quelconque de degré n, c'est-à-dire de formule n'utilisant que les coefficients, la valeur 1, les et l'extraction des racines n-ièmes.
Formule quadratique
En algèbre classique, la formule quadratique est la solution de l'équation du second degré. Il y a d'autres façons pour résoudre l'équation du second degré au lieu d'utiliser la formule quadratique, comme la factorisation, la méthode de complétion du carré ou le tracé du graphe. Mais utiliser la formule quadratique est souvent la façon la plus pratique. L'équation du second degré générale est : Ici, x représente une valeur inconnue alors que a, b et c sont constantes, avec a non nul.
Discriminant
En mathématiques, le discriminant noté , ou le réalisant noté , est une notion algébrique. Il est utilisé pour résoudre des équations du second degré. Il se généralise pour des polynômes de degré > 0 quelconque et dont les coefficients sont choisis dans des ensembles munis d'une addition et d'une multiplication. Le discriminant apporte dans ce cadre une information sur l'existence ou l'absence de racine multiple. Le discriminant est utilisé dans d'autres domaines que celui de l'étude des polynômes.
Factorisation
En mathématiques, la factorisation consiste à écrire une expression algébrique (notamment une somme), un nombre, une matrice sous la forme d'un produit. Cette transformation peut se faire suivant différentes techniques détaillées ci-dessous. Les enjeux de la factorisation sont très divers : à un niveau élémentaire, le but peut être de ramener la résolution d'une équation à celle d'une équation produit-nul, ou la simplification d'une écriture fractionnaire ; à un niveau intermédiaire, la difficulté algorithmique présumée de la factorisation des nombres entiers en produit de facteurs premiers est à la base de la fiabilité du cryptosystème RSA.
Équation cubique
thumb|right|Une équation cubique admet au plus trois solutions réelles. En mathématiques, une équation cubique est une équation polynomiale de degré 3, de la forme ax + bx + cx + d = 0 avec a non nul, où les coefficients a, b, c et d sont en général supposés réels ou complexes. Les équations cubiques étaient connues des anciens Babyloniens, Grecs, Chinois, Indiens et Égyptiens. On a trouvé des tablettes babyloniennes () avec, en écriture cunéiforme, des tables de calcul de cubes et de racines cubiques.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.