Surface areaThe surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with flat polygonal faces), for which the surface area is the sum of the areas of its faces. Smooth surfaces, such as a sphere, are assigned surface area using their representation as parametric surfaces.
Tétraèdre équifacialEn géométrie, un tétraèdre équifacial, ou disphénoïde (du grec sphenoeides, « en forme de coin »), est un tétraèdre (non plan) dont les quatre faces sont des triangles isométriques. Une condition équivalente est que les arêtes opposées soient de même longueur. Il a été signalé dans les Annales de Gergonne dès 1810, puis beaucoup étudié par les géomètres des s. Le tétraèdre régulier est équifacial mais un tétraèdre équifacial peut avoir des arêtes de trois longueurs différentes.
Regular PolytopesRegular Polytopes est un livre de mathématiques écrit par le mathématicien canadien Harold Scott MacDonald Coxeter. Initialement publié en 1947, le livre a été mis à jour et réédité en 1963 et 1973. Le livre est une étude complète de la géométrie des polytopes réguliers, c'est-à-dire les polygones et polyèdres réguliers ainsi que leurs généralisations aux dimensions supérieures. Provenant d'un essai intitulé L'Analogie dimensionnelle écrit en 1923, la première édition du livre a pris à Coxeter vingt-quatre ans.
Schläfli orthoschemeIn geometry, a Schläfli orthoscheme is a type of simplex. The orthoscheme is the generalization of the right triangle to simplex figures of any number of dimensions. Orthoschemes are defined by a sequence of edges that are mutually orthogonal. They were introduced by Ludwig Schläfli, who called them orthoschemes and studied their volume in Euclidean, hyperbolic, and spherical geometries. H. S. M. Coxeter later named them after Schläfli.
Sphère médianevignette| Un polyèdre et sa sphère médiane en bleu. Les cercles rouges sont les limites des calottes sphériques dans lesquelles la surface de la sphère est visible depuis chaque sommet. vignette|Cube et son octaèdre dual avec sphère médiane commune. En géométrie, la sphère médiane ou intersphère d'un polyèdre est une sphère qui est tangente à chaque arête du polyèdre, c'est-à-dire qu'elle touche chacune des arêtes en exactement un point.
Diagramme de SchlegelEn géométrie, un diagramme de Schlegel est une projection d'un polytope de l'espace à d dimensions dans l'espace à d-1 dimensions par un point donné à travers une de ses faces. Il en résulte une division du polytope d'origine dans qui lui est combinatoirement équivalente. Au début du , les diagrammes de Schlegel s'avérèrent être des outils étonnamment pratiques pour l'étude des propriétés topologiques et combinatoires des polytopes.
Sphère circonscriteEn géométrie, une sphère circonscrite à un polyèdre est une sphère contenant le polyèdre et dont tous les sommets du polyèdre sont sur la surface de la sphère. Il s'agit d'une extension du cercle circonscrit en dimension 3. En cas d'existence, une sphère circonscrite n'est pas la plus petite sphère contenant le polyèdre ; par exemple, le tétraèdre rectangle formé par un sommet d'un cube et ses trois voisins admet la sphère circonscrite au cube comme sphère circonscrite, mais il existe une sphère englobante à ce tétraèdre plus petite, celle avec les trois sommets voisins sur son équateur.
Pyramide à base carréeEn géométrie, une pyramide à base carrée est une pyramide avec une base carrée et quatre faces latérales triangulaires. Si les quatre faces triangulaires sont équilatérales, alors la pyramide est un solide de Johnson (J1), et peut être pensée comme la moitié d'un octaèdre. D'autres pyramides carrées ne sont pas semblables à ce solide de Johnson ; la pyramide de Khéops, par exemple, possède quatre faces triangulaires isocèles non équilatérales.
Patron (géométrie)En géométrie, le patron d'un polyèdre est une figure géométrique plane en un seul morceau qui permet de reconstituer le polyèdre après plusieurs pliages (au niveau de certaines arêtes, les autres apparaissant par jonction des bords du patron). Le terme de patron est à prendre ici dans son deuxième sens : celui de modèle pour construire un objet. Développer un polyèdre consiste à rabattre les différentes faces du polyèdre dans un même plan par découpage selon les arêtes.
Géométrie moléculaire tétraédriqueEn chimie, la géométrie moléculaire tétraédrique est la géométrie des molécules où un atome central, noté A, est lié à quatre atomes, notés X, aux sommets d'un tétraèdre régulier (ou presque régulier). Ces composés appartiennent à la classe AX4E0 selon la théorie VSEPR. Les angles de liaison sont de ≈ 109,47° (double de l'angle dit « magique ») lorsque tous les substituants sont les mêmes, comme dans le cas du méthane (CH4).