Complemented latticeIn the mathematical discipline of order theory, a complemented lattice is a bounded lattice (with least element 0 and greatest element 1), in which every element a has a complement, i.e. an element b satisfying a ∨ b = 1 and a ∧ b = 0. Complements need not be unique. A relatively complemented lattice is a lattice such that every interval [c, d], viewed as a bounded lattice in its own right, is a complemented lattice. An orthocomplementation on a complemented lattice is an involution that is order-reversing and maps each element to a complement.
Treillis modulaireDans le cadre mathématique de la théorie des ordres, un treillis modulaire est un treillis qui vérifie la condition auto-duale suivante Loi de modularité : implique Les treillis modulaires apparaissent en algèbre et dans de nombreux autres domaines des mathématiques. Par exemple, les sous-espaces vectoriels d'un espace vectoriel, et plus généralement les sous-modules d'un module sur un anneau, forment un treillis modulaire. Les treillis modulaires sont parfois appelés treillis de Dedekind, d'après Richard Dedekind, qui a formulé la loi de modularité.
Treillis de Youngthumb|upright=1.5|Le diagramme de Hasse du treillis de Young. En mathématiques, et notamment en combinatoire, le treillis de Young est l'ensemble partiellement ordonné composé de toutes les partitions d'entiers. Cet ensemble est un treillis. Il est nommé ainsi d'après Alfred Young qui, dans une série d'articles intitulés On quantitative substitutional analysis a développé la théorie des représentations du groupe symétrique. Dans la théorie de Young, les objets appelés maintenant diagrammes de Young ou diagrammes de Ferrers et l'ordre partiels définis sur eux jouent un rôle central.
Graphe médianEn théorie des graphes, un graphe médian est un type de graphe. Étant donné un triplet de nœuds dans un graphe, les médians de ces sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Un graphe médian est un graphe tel que pour tout triplet de nœuds il existe un unique médian. En théorie des graphes, les médians d'un triplet de sommets sont les sommets se trouvant sur les plus courts chemins entre ces sommets. Autrement dit, si est l'ensemble de sommets sur les plus courts chemins entre et , alors l'ensemble des sommets médians est .
Priestley spaceIn mathematics, a Priestley space is an ordered topological space with special properties. Priestley spaces are named after Hilary Priestley who introduced and investigated them. Priestley spaces play a fundamental role in the study of distributive lattices. In particular, there is a duality ("Priestley duality") between the of Priestley spaces and the category of bounded distributive lattices. A Priestley space is an ordered topological space (X,τ,≤), i.e.
Théorème de l'idéal premier dans une algèbre de BooleEn mathématiques, un théorème de l'idéal premier garantit l'existence de certains types de sous-ensembles dans une algèbre. Un exemple courant est le théorème de l'idéal premier dans une algèbre de Boole, qui énonce que tout idéal d'une algèbre de Boole est inclus dans un idéal premier. Une variante de cet énoncé pour filtres sur des ensembles est connue comme le théorème de l'ultrafiltre.
Limit-preserving function (order theory)In the mathematical area of order theory, one often speaks about functions that preserve certain limits, i.e. certain suprema or infima. Roughly speaking, these functions map the supremum/infimum of a set to the supremum/infimum of the image of the set. Depending on the type of sets for which a function satisfies this property, it may preserve finite, directed, non-empty, or just arbitrary suprema or infima. Each of these requirements appears naturally and frequently in many areas of order theory and there are various important relationships among these concepts and other notions such as monotonicity.
Spectral spaceIn mathematics, a spectral space is a topological space that is homeomorphic to the spectrum of a commutative ring. It is sometimes also called a coherent space because of the connection to coherent topos. Let X be a topological space and let K(X) be the set of all compact open subsets of X. Then X is said to be spectral if it satisfies all of the following conditions: X is compact and T0. K(X) is a basis of open subsets of X. K(X) is closed under finite intersections. X is sober, i.e.
Tableau de YoungLes tableaux de Young sont des objets combinatoires qui jouent un rôle important en théorie des représentations des groupes et dans la théorie des fonctions symétriques. Ils permettent en particulier de construire les représentations irréductibles du groupe symétrique, ainsi que celles du groupe général linéaire sur le corps des complexes. Les tableaux de Young ont été introduits par Alfred Young, un mathématicien de l'université de Cambridge, en 1900. Ils ont été appliqués à l'étude du groupe symétrique par Georg Frobenius en 1903.
Completely distributive latticeIn the mathematical area of order theory, a completely distributive lattice is a complete lattice in which arbitrary joins distribute over arbitrary meets. Formally, a complete lattice L is said to be completely distributive if, for any doubly indexed family {xj,k | j in J, k in Kj} of L, we have where F is the set of choice functions f choosing for each index j of J some index f(j) in Kj. Complete distributivity is a self-dual property, i.e. dualizing the above statement yields the same class of complete lattices.