Concepts associés (62)
Triangle équilatéral
En géométrie euclidienne, un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles internes ont alors la même mesure de 60 degrés, et il constitue ainsi un polygone régulier à trois sommets. Tous les triangles équilatéraux sont semblables. Chaque triangle équilatéral est invariant par trois symétries axiales et deux rotations dont le centre est à la fois le centre de gravité, l'orthocentre et le centre des cercles inscrit et circonscrit au triangle.
Stellation
droite|vignette|200px|Exemple de la stellation en trois dimensions, ici un dodécaèdre étoilé En géométrie, la stellation est un procédé de construction de nouveaux polygones (en dimension 2), de nouveaux polyèdres (en 3D), ou, en général, de nouveaux polytopes en dimension n, en étendant les arêtes ou faces planes, généralement de manière symétrique, jusqu'à ce que chacune d'entre elles se rejoignent de nouveau. La nouvelle figure, avec un aspect étoilé, est appelée une stellation de l'original.
Heptagramme
Un heptagramme est une étoile à sept branches dessinée sur la base de sept droites. Plus précisément : c'est un heptagone régulier étoilé. Un heptagramme est une stellation de l'heptagone régulier convexe. Il existe deux types d'heptagrammes, désignés par leur symbole de Schläfli {7/2} et {7/3}, le second nombre représentant l'intervalle entre sommets utilisé pour tracer la figure à partir de l'heptagone régulier convexe {7/1}. La plus petite étoile polygonale est le pentagramme {5/2}.
Heptadécagone
Un heptadécagone est un polygone à 17 sommets, donc 17 côtés et 119 diagonales. La somme des angles internes d'un heptadécagone non croisé vaut , soit . Dans l'heptadécagone régulier convexe, chaque angle interne vaut donc , soit environ 158,82°. Un heptadécagone régulier est un heptadécagone dont les 17 côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a huit : sept étoilés (les heptadécagrammes notés {17/k} pour k de 2 à 8) et un convexe (noté {17}).
Polygone équilatéral
En géométrie, un polygone équilatéral est un polygone qui a tous ses côtés de même longueur. Il n'est régulier que si de plus il est équiangle, c'est-à-dire si tous ses angles ont la même mesure. En géométrie euclidienne traditionnelle, tous les triangles équilatéraux sont semblables entre eux et réguliers : leurs trois angles valent 60 degrés. Un quadrilatère équilatéral s'appelle un losange. Le seul losange régulier est le carré. Un polygone équilatéral n'est pas nécessairement convexe, ni même simple : 5-gon equilateral 03.
Polygone
Un polygone, en géométrie euclidienne, est une figure géométrique plane formée d'une ligne brisée (appelée aussi ligne polygonale) fermée, c'est-à-dire d'une suite cyclique de segments consécutifs. Les segments sont appelés bords ou côtés et les extrémités des côtés sont appelés sommets ou coins du polygone. Un polygone est dit croisé si au moins deux côtés non consécutifs sont sécants, et simple si l'intersection de deux côtés est vide ou réduite à un sommet pour deux côtés consécutifs.
Hexagramme (géométrie)
A hexagram (Greek) or sexagram (Latin) is a six-pointed geometric star figure with the Schläfli symbol {6/2}, 2{3}, or {{3}}. Since there are no true regular continuous hexagrams, the term is instead used to refer to a compound figure of two equilateral triangles. The intersection is a regular hexagon. The hexagram is part of an infinite series of shapes which are compounds of two n-dimensional simplices. In three dimensions, the analogous compound is the stellated octahedron, and in four dimensions the compound of two 5-cells is obtained.
Polygone régulier étoilé
En géométrie, un polygone régulier étoilé (à ne pas confondre avec une partie étoilée) est un polygone régulier non convexe. Les polygones étoilés non réguliers ne sont pas formellement définis. Branko Grünbaum identifie deux notions primaires utilisées par Kepler, l'une étant le polygone régulier étoilé avec des arêtes sécantes qui ne génèrent pas de nouveaux sommets, et l'autre étant de simples polygones concaves.
Octogone
Un octogone (du grec ὀκτάγωνον oktágōnon, cf. ὀκτώ oktṓ « huit » et γωνία gōnía « angle ») est un polygone à huit sommets, donc huit côtés et vingt diagonales. La somme des angles internes d'un octogone non croisé est égale à , soit °. Un octogone régulier est un octogone dont les huit côtés ont la même longueur et dont les angles internes ont la même valeur. Il existe un octogone régulier étoilé (l'octagramme régulier, noté {8/3}) mais usuellement, « octogone régulier » désigne implicitement l'octogone régulier convexe, noté {8}.
Décagone
Un décagone est un polygone à 10 sommets, donc 10 côtés et 35 diagonales. La somme des angles internes d'un décagone non croisé vaut °. Un décagone régulier est un décagone dont les dix côtés ont la même longueur et dont les angles internes ont même mesure. Il y en a deux : un étoilé (le décagramme noté {10/3}) et un convexe (noté {10}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le décagone régulier ». Il est constructible. L'aire d'un décagone régulier de côté a vaut Cette construction est excessivement simple mais n'est pas forcément exacte : Tracer un cercle Γ de centre O.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.