Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Classe de ChernEn mathématiques, les classes de Chern sont des classes caractéristiques associées aux fibrés vectoriels. Elles tiennent leur nom du mathématicien sino-américain Shiing-Shen Chern, qui les a introduites en 1946 dans le cas complexe. Les classes de Chern ont des applications importantes en mathématiques, notamment en topologie et géométrie algébriques, et en physique dans l'étude des théories de Yang-Mills et des champs quantiques. Distinguer deux fibrés vectoriels sur une variété lisse est en général un problème difficile.
K-théorieEn mathématiques, la K-théorie est un outil utilisé dans plusieurs disciplines. En topologie algébrique, la sert de théorie de cohomologie. Une variante est utilisée en algèbre sous le nom de K-théorie algébrique. Les premiers résultats de la K-théorie ont été dans le cadre de la topologie algébrique, comme une théorie de cohomologie extraordinaire (elle ne vérifie pas l'axiome de dimension). Par la suite, ces méthodes ont été utilisées dans beaucoup d'autres domaines comme la géométrie algébrique, l'algèbre, la théorie des nombres, la théorie des opérateurs, etc.
Section d'un fibréEn topologie, une section d'un fibré sur un espace topologique est une fonction continue telle que pour tout point de . Toute section est injective. Une section est une généralisation de la notion de graphe d'une fonction. Le graphe d'une fonction g : X → Y peut être identifié à une fonction prenant ses valeurs dans le produit cartésien E = X×Y de X et Y: Une section est une caractérisation abstraite de ce qu'est un graphe. Soit π : E → X la projection sur le premier facteur du produit cartésien: π(x,y) = x.
GrassmannienneEn mathématiques, les grassmanniennes sont des variétés dont les points correspondent aux sous-espaces vectoriels d'un espace vectoriel fixé. On note G(k, n) ou G(K) la grassmannienne des sous-espaces de dimension k dans un espace de dimension n sur le corps K. Ces espaces portent le nom de Hermann Grassmann qui en donna une paramétrisation et sont encore appelés grassmanniennes des « k-plans ». Pour k = 1, la grassmannienne est l'espace projectif associé à l'espace vectoriel.
Classe d'EulerEn topologie algébrique, la classe d’Euler est une classe caractéristique d'un fibré vectoriel réel orienté. Elle mesure l’obstruction à trouver une section d’un fibré qui ne s’annule pas. Cette notion trouve son origine dans la théorie de l'homologie. Soit ξ un fibré vectoriel réel orienté de rang sur une variété compacte orientée de dimension . Une section générique de ξ est transverse à la section nulle. Par conséquent, le lieu de ses zéros est une sous-variété compacte sans bord orientée de dimension -, elle possède une classe d’homologie [] qui ne dépend pas du choix de la section.
Classe de PontriaguineEn mathématiques, les classes de Pontriaguine sont des classes caractéristiques associées aux fibrés vectoriels réels, nommées d'après Lev Pontriaguine. Les classes de Pontriaguine appartiennent aux groupes de cohomologie de degré un multiple de quatre. Soit E un fibré vectoriel réel au-dessus de M. La k-ième classe de Pontriaguine pk(E) est définie par : pk(E) = pk(E, Z) = (−1)k c2k(E ⊗ C) ∈ H4k(M, Z), où c2k(E ⊗ C) est la 2k-ième classe de Chern du complexifié E ⊗ C = E ⊕ iE de E ; H4k(M, Z) est le 4k-ième groupe de cohomologie de M à coefficients entiers.
Espace classifiantEn mathématiques, un espace classifiant pour un groupe topologique G est la base d’un fibré principal particulier EG → BG appelé fibré universel, induisant tous les fibrés ayant ce groupe de structure sur n’importe quel CW-complexe X par (pullback). Dans le cas d’un groupe discret, la définition d’espace classifiant correspond à celle d’un espace d'Eilenberg-MacLane K(G, 1), c’est-à-dire un espace connexe par arcs dont tous les groupes d'homotopie sont triviaux en dehors du groupe fondamental (lequel est isomorphe à G).
Formule de Gauss-Bonnetvignette|Exemple d'une surface à laquelle le théorème de Gauss-Bonnet peut être appliqué En géométrie différentielle, la formule de Gauss-Bonnet est une propriété reliant la géométrie (au sens de la courbure de Gauss) et la topologie (au sens de la caractéristique d'Euler) des surfaces. Elle porte le nom des mathématiciens Carl Friedrich Gauss, qui avait conscience d'une version du théorème, mais ne la publia jamais, et Pierre Ossian Bonnet, qui en publia un cas particulier en 1848.
Tautological bundleIn mathematics, the tautological bundle is a vector bundle occurring over a Grassmannian in a natural tautological way: for a Grassmannian of -dimensional subspaces of , given a point in the Grassmannian corresponding to a -dimensional vector subspace , the fiber over is the subspace itself. In the case of projective space the tautological bundle is known as the tautological line bundle. The tautological bundle is also called the universal bundle since any vector bundle (over a compact space) is a pullback of the tautological bundle; this is to say a Grassmannian is a classifying space for vector bundles.