Concepts associés (26)
Fonction bornée
droite|vignette| Schéma d'une fonction bornée (rouge) et d'une fonction non bornée (bleu). Intuitivement, le graphe d'une fonction bornée reste dans une bande horizontale, contrairement au graphe d'une fonction non bornée. En mathématiques, une fonction est dite bornée si est borné. Pour une fonction f définie sur un ensemble X et à valeurs réelles ou complexes, cela revient à dire qu'il existe un nombre réel M tel que pour tout x dans X, Une fonction à valeurs réelles est dite majorée ( minorée) si l'ensemble de ses valeurs possède un majorant ( minorant) réel.
Sine and cosine
In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .
Fonction multivaluée
frame|right|Ce diagramme représente une multifonction : à chaque élément de X on fait correspondre une partie de Y ; ainsi à l'élément 3 de X correspond la partie de Y formée des deux points b et c. En mathématiques, une fonction multivaluée (aussi appelée correspondance, fonction multiforme, fonction multivoque ou simplement multifonction) est une relation binaire quelconque, improprement appelée fonction car non fonctionnelle : à chaque élément d'un ensemble elle associe, non pas au plus un élément mais possiblement zéro, un ou plusieurs éléments d'un second ensemble.
Identité trigonométrique
Une identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
Formule d'Euler
La formule d'Euler est une égalité mathématique, attribuée au mathématicien suisse Leonhard Euler. Elle s'écrit, pour tout nombre réel x, et se généralise aux x complexes. Ici, le nombre e est la base des logarithmes naturels, i est l'unité imaginaire, sin et cos sont des fonctions trigonométriques. Cette formule peut être interprétée en disant que la fonction x ↦ e, appelée fonction cis, décrit le cercle unité dans le plan complexe lorsque x varie dans l'ensemble des nombres réels.
Théorème de Pythagore
thumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
Unité imaginaire
En mathématiques, l’unité imaginaire est un nombre complexe, noté (parfois en physique afin de ne pas le confondre avec la notation de l'intensité électrique), dont le carré vaut –1. Ses multiples par des nombres réels constituent les nombres imaginaires purs. L'appellation d'« imaginaire » est due à René Descartes et celle d'« unité imaginaire » à Carl Friedrich Gauss. Sans avoir disparu, cette appellation n'est pas d'un usage très généralisé chez les mathématiciens, qui se contentent souvent de parler du nombre i.
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Valeur principale
En mathématiques, plus particulièrement en analyse complexe, les valeurs principales d'une fonction à plusieurs valeurs sont les valeurs le long d'une branche choisie de cette fonction, de sorte qu'elle est à valeur unique. Le cas le plus simple se présente en prenant la racine carrée d'un nombre réel positif. Par exemple, 4 a deux racines carrées : 2 et −2 ; parmi ceux-ci, la racine positive, 2, est considérée comme la racine principale et est notée . On considère la fonction logarithme complexe ln(z) .
Logarithme complexe
En mathématiques, le logarithme complexe est une fonction généralisant la fonction logarithme naturel (définie sur ]0,+∞[) au domaine C* des nombres complexes non nuls. Plusieurs définitions sont possibles. Aucune ne permet de conserver, à la fois, l'univocité, la continuité et les propriétés algébriques de la fonction logarithme. Histoire des nombres complexes La question de savoir s'il est possible de prolonger le logarithme naturel (c'est-à-dire de le définir sur un ensemble plus grand que ]0,+∞[) s'est posée dès la seconde moitié du avec les développements en série des fonctions.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.