InvariantEn mathématiques, le mot invariant possède suivant le contexte différentes significations (non équivalentes). Il est utilisé aussi bien en géométrie et en topologie qu'en analyse et en algèbre. Si g : E→E est une application, un invariant de g est un point fixe, c'est-à-dire un élément x de E qui est sa propre image par g : Pour une telle application g, une partie P de E est dite : invariante point par point si tous ses éléments sont des points fixes ; globalement invariante par g, ou stable par g, si , c'est-à-dire : (cette propriété est moins forte que la précédente).
Agrandissement et réductionEn géométrie, l’agrandissement et la réduction sont les deux cas de transformations géométriques d'une figure en multipliant ses dimensions par un nombre appelé rapport : ce nombre est supérieur à 1 dans le cas d’un agrandissement, inférieur dans le cas d’une réduction. La figure obtenue est ainsi semblable à l’ancienne, et si les deux apparaissent dans le même plan, elles s’obtiennent chacune par une homothétie sur la figure de l’autre. C’est le cas par exemple d’une configuration de Thalès.
BirapportLe birapport, ou rapport anharmonique selon la dénomination de Michel Chasles est un outil puissant de la géométrie, en particulier la géométrie projective. La notion remonte à Pappus d'Alexandrie, mais son étude systématique est réalisée en 1827 par Möbius. thumb|Les divisions sont supposées régulières. Le birapport de C, D par rapport à A, B est : . thumb|Les divisions sont supposées régulières. Le birapport de C, D par rapport à A, B est : .
Fonction homogènevignette|Exemple de fonction homogène de degré 1 En mathématiques, une fonction homogène est une fonction qui a un comportement d’échelle multiplicatif par rapport à son ou ses arguments : si l'argument (vectoriel au besoin) est multiplié par un scalaire, alors le résultat sera multiplié par ce scalaire porté à une certaine puissance. Soient E et F deux espaces vectoriels sur un même corps commutatif K.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Application affineEn géométrie, une application affine est une application entre deux espaces affines qui est compatible avec leur structure. Cette notion généralise celle de fonction affine de R dans R (), sous la forme , où est une application linéaire et est un point. Une bijection affine (qui est un cas particulier de transformation géométrique) envoie les sous-espaces affines, comme les points, les droites ou les plans, sur le même type d'objet géométrique, tout en préservant la notion de parallélisme.
Similitude (géométrie)En géométrie euclidienne, une similitude est une transformation qui multiplie toutes les distances par une constante fixe, appelée son rapport. L' de toute figure par une telle application est une figure semblable, c'est-à-dire intuitivement « de même forme ». thumb|300px|Dans ce dessin, les objets de même couleur sont semblables. Les isométries, c'est-à-dire les transformations qui conservent les distances sont des cas particuliers de similitudes ; elles transforment des figures en des figures de même forme et de même taille.
RectangleEn géométrie, un rectangle est un quadrilatère dont les quatre angles sont droits. Un quadrilatère est un polygone (donc une figure plane) constitué de quatre points (appelés sommets) et de quatre segments (ou côtés) liant ces sommets deux à deux de manière à délimiter un contour fermé. Fichier:Six Quadrilaterals.svg|Quadrilatères. Les deux situés en haut à gauche (vert et marron) sont des rectangles. Fichier:Rectangle 2.svg|Un rectangle, ses deux diagonales et un [[angle droit]] codé.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Inversion géométriqueEn géométrie, l'inversion géométrique est l'étude de l'inversion, une transformation du plan euclidien qui envoie des cercles ou des lignes vers d'autres cercles ou lignes et qui préserve les angles entre les courbes de croisement. De nombreux problèmes difficiles en géométrie deviennent beaucoup plus faciles à résoudre lorsqu'une inversion est appliquée. L'inversion semble avoir été découverte par un certain nombre de personnes à la même époque, dont Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs et Ingram (1842-3) et Kelvin (1845).