NombreUn nombre est un concept permettant d’évaluer et de comparer des quantités ou des rapports de grandeurs, mais aussi d’ordonner des éléments en indiquant leur rang. Souvent écrits à l’aide d’un ou plusieurs chiffres, les nombres interagissent par le biais d’opérations qui sont résumées par des règles de calcul. Les propriétés de ces relations entre les nombres sont l’objet d’étude de l’arithmétique, qui se prolonge avec la théorie des nombres.
Système de numération indo-arabevignette|upright=1.5|Généalogie des numérations brahmi, gwalior, sanskrit-dévanagari et arabes (1935). Le système de numération indo-arabe est un système de numération de base dix employant une notation positionnelle et dix chiffres, allant de zéro à neuf, dont le tracé est indépendant de la valeur représentée. Dans ce système, la représentation d'un nombre correspond à son développement décimal. Le système doit son nom au fait qu'il est apparu en Inde et qu'il est parvenu en Europe par l'intermédiaire des Arabes.
The Art of Computer ProgrammingThe Art of Computer Programming (TAOCP) est une série de livres en plusieurs volumes sur la programmation informatique, écrits par Donald Knuth : Volume 1, Fundamental Algorithms (troisième édition 1997) ; Volume 2, Seminumerical Algorithms (troisième édition 1997) ; Volume 3, Sorting and Searching (seconde édition, 1998) ; Volume 4A, Combinatorial Algorithms, Part 1 (2011) ; Volume 4B, Combinatorial Algorithms, Part 2 (2022). En 2022, sur les sept volumes initialement prévus, seuls l’entièreté des trois premiers volumes et les deux premiers tomes du quatrième volume ont été publiés.
Baguettes à calculervignette|Représentation de 71824 à l'aide de baguettes à calculer, Yang Hui () - Encyclopédie de Yongle Les baguettes à calculer (chinois : 算筹/算籌, pinyin : suànchóu) sont des bâtonnets d'environ de long utilisés par les Chinois dès le pour effectuer des calculs. Le système s'appuie sur une représentation des nombres selon une numération décimale positionnelle. Ce système précède de plusieurs siècles le système de calcul avec boulier.
Chiffre significatifLe nombre de chiffres significatifs indique la précision d'une mesure physique. Il s'agit des chiffres connus avec certitude ou compris dans un intervalle d'incertitude. La précision (ou l'incertitude) avec laquelle on connaît la valeur d'une grandeur dépend du mesurage (ensemble d'opérations ayant pour but de déterminer la valeur d'une grandeur). Exemple : a cinq chiffres significatifs. Le premier chiffre incertain est le 5.
1 (nombre)1 (un) est l'entier naturel représentant une entité seule — définition qui n'est autre qu'une pétition de principe. « Un » fait quelquefois référence à l'unité, et « unitaire » est quelquefois utilisé comme un adjectif dans ce sens (par exemple, un segment de longueur unitaire est un segment de longueur 1). Tous les systèmes de numération possèdent un chiffre pour signifier le nombre un. Un (chiffre) Le chiffre « un », symbolisé « 1 », est le chiffre arabe servant notamment à signifier le nombre un.
AryabhataAryabhata (IAST : Āryabhaṭa, sanskrit : आर्यभट) est le premier des grands astronomes de l'âge classique de l'Inde, auteur de l'ouvrage Āryabhaṭīya. Il naît en 476 et passe probablement l'essentiel de sa vie à Kusumapura que l'on identifie généralement comme Pāṭaliputra, l'actuelle Patna, dans l’état indien du Bihar. On sait très peu de choses sur la vie d'Aryabhata et les historiographes en sont souvent réduits aux conjectures.
Division euclidiennethumb|Écriture de la division euclidienne de 30 par 7, le quotient est 4 et le reste 2.En mathématiques, et plus précisément en arithmétique, la division euclidienne ou division entière est une procédure de calcul qui, à deux entiers naturels appelés dividende et diviseur, associe deux autres entiers appelés quotient (quotient euclidien s'il y a ambiguïté) et reste. Initialement définie pour deux entiers naturels non nuls, elle se généralise aux entiers relatifs.
Demi-anneauEn mathématiques, un demi-anneau, ou semi-anneau, est une structure algébrique qui a les propriétés suivantes : constitue un monoïde commutatif ; forme un monoïde ; est distributif par rapport à + ; 0 est absorbant pour le produit, autrement dit: pour tout . Ces propriétés sont proches de celles d'un anneau, la différence étant qu'il n'y a pas nécessairement d'inverses pour l’addition dans un demi-anneau. Un demi-anneau est commutatif quand son produit est commutatif ; il est idempotent quand son addition est idempotente.
Mathématiques mésopotamiennesthumb|250px|Photographie de la tablette YBC 7289 annotée. Les nombres écrits dans le système babylonien donnent la racine carrée de 2 avec quatre chiffres sexagésimaux significatifs, soit près de six chiffres décimaux :1 + 24/60 + 51/602 + 10/603 = 1,41421296... (crédit : Bill Casselman). Les mathématiques mésopotamiennes sont les mathématiques pratiquées par les peuples de l'ancienne Mésopotamie (dans l’Irak actuel), depuis l'époque des Sumériens jusqu'à la chute de Babylone en .