Segment (mathématiques)vignette|Le segment . En géométrie, un segment de droite (souvent abrégé en « segment ») est une portion de droite délimitée par deux points, appelés extrémités du segment. Un segment reliant deux points et est noté ou et représente la partie de la droite qui se situe « entre » les points et . Intuitivement, un segment correspond à un fil tendu entre deux points, en négligeant l’épaisseur du fil et la déformation due à son poids.
SymédianeEn géométrie, les symédianes d'un triangle désignent des droites particulières de cette figure : ce sont les droites symétriques des médianes par rapport aux bissectrices. La symédiane en un sommet A d'un triangle est l'isogonale de la médiane par rapport aux côtés de l'angle A. Si est la longueur de la médiane issue de A, alors la longueur de la symédiane issue de A est donnée par la formule Émile Lemoine a démontré en 1873 que les trois symédianes d'un triangle d'un plan affine euclidien sont concourantes; il les appelle « médiane antiparallèle », le terme de « symédiane » sera introduit par Maurice d'Ocagne en 1880.
Triangle rectangleEn géométrie euclidienne, un triangle rectangle est un triangle dont l'un des angles est droit. Les deux autres angles sont alors complémentaires, de mesure strictement inférieure. On nomme alors hypoténuse le côté opposé à l'angle droit. Les deux autres côtés, adjacents à l’angle droit, sont appelés cathètes. L’hypoténuse est alors le plus grand côté du triangle, et sa longueur est reliée à celles des deux autres côtés par le théorème de Pythagore. Cette relation est même caractéristique des triangles rectangles.
PerpendicularitéLa perpendicularité (du latin per-pendiculum, « fil à plomb ») est le caractère de deux entités géométriques qui se coupent à angle droit. La perpendicularité est une propriété importante en géométrie et en trigonométrie, branche des mathématiques fondée sur les triangles rectangles, dotés de propriétés particulières grâce à leurs deux segments perpendiculaires. En géométrie plane, deux droites sont perpendiculaires quand elles se coupent en formant un angle droit. La notion de perpendicularité s'étend à l'espace pour des droites ou des plans.
Règle du parallélogrammevignette vignette|Les vecteurs x + y et x – y forment les diagonales du parallélogramme de côtés x et y. En mathématiques, la forme la plus simple de la règle du parallélogramme (ou identité du parallélogramme, ou encore égalité du parallélogramme) est celle de géométrie élémentaire. Elle dit que la somme des carrés des longueurs des quatre côtés d'un parallélogramme est égale à la somme des carrés des longueurs de ses deux diagonales : ou encore, puisque deux côtés opposés ont même longueur : (Dans le cas où le parallélogramme est un rectangle, les diagonales sont de longueurs égales, ce qui ramène cette règle au théorème de Pythagore.
SemiperimeterIn geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter s.
Hauteur d'un triangleEn géométrie plane, une hauteur d'un triangle est une droite passant par un sommet et coupant perpendiculairement le côté opposé à ce sommet (éventuellement prolongé). Les pieds des hauteurs sont les projetés orthogonaux de chacun des sommets sur la droite portant le côté opposé. On donne également le nom de hauteur au segment joignant un sommet et le pied de la hauteur passant par ce sommet, ainsi qu'à la longueur de ce segment, soit la distance séparant un sommet et la droite portant son côté opposé.
Médiane (géométrie)Dans son sens le plus courant, une médiane désigne, dans un triangle, une droite joignant un des trois sommets du triangle au milieu du côté opposé. Par extension, en géométrie plane, les médianes d'un quadrilatère sont les segments reliant les milieux de deux côtés opposés. Enfin, en géométrie dans l'espace, les médianes d'un tétraèdre sont les droites passant par un sommet du tétraèdre et par l'isobarycentre des trois autres. Dans un triangle ABC, la médiane issue du sommet A est la droite (AI) où I désigne le milieu du segment [BC].
Quadrilatère orthodiagonalvignette|Exemples de quadrilatères orthodiagonaux non convexes. En géométrie euclidienne, un quadrilatère orthodiagonal est un quadrilatère dont les diagonales se coupent à angle droit. Autrement dit, il s'agit d'un polygone à quatre côtés dont les segments entre sommets non adjacents sont perpendiculaires. centré|vignette|400x400px|Exemples de quadrilatères orthodiagonaux convexes. Un cerf-volant est un quadrilatère orthodiagonal dont l'une des diagonales est axe de symétrie.
Cercles inscrit et exinscrits d'un triangleÉtant donnés trois points non alignés A, B et C du plan, il existe quatre cercles tangents aux trois droites (AB), (AC) et (BC). Ce sont le cercle inscrit (celui qui est intérieur au triangle) et les cercles exinscrits du triangle ABC. Bissectrice Un cercle tangent aux trois droites (AB), (BC), (CA) doit posséder un centre équidistant de ces trois droites. Or l'ensemble des points équidistants de deux droites sécantes (d1) et (d2) forme deux droites perpendiculaires, constituées des quatre demi-droites bissectrices chacune d'un des quatre secteurs angulaires construits par les droites (d1) et (d2), et appelées bissectrices des droites (d1) et (d2).