Groupe général linéaireEn mathématiques, le groupe général linéaire — ou groupe linéaire — de degré n d’un corps commutatif K (ou plus généralement d'un anneau commutatif unifère) est le groupe des matrices inversibles de taille n à coefficients dans K, muni du produit matriciel. On le note GL(K) ou GL(n, K) et il représente les automorphismes de l’espace vectoriel K. Ce groupe est non abélien dès lors que n > 1. Lorsque K est un corps commutatif, l’ensemble GL(n, K) est en outre un ouvert pour la topologie de Zariski.
Module sur un anneauEn mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif). Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux.
Suite exacteEn mathématiques, plus particulièrement en algèbre homologique, une suite exacte est une suite (finie ou infinie) d'objets et de morphismes entre ces objets telle que l' de l'un est égale au noyau du suivant. Dans le contexte de la théorie des groupes, on dit que la suite (finie ou infinie) de groupes et de morphismes de groupes est exacte si pour tout entier naturel n on a . Dans ce qui précède, sont des groupes et des morphismes de groupes avec . Dans la suite, 0 dénote le groupe trivial, qui est l'objet nul dans la catégorie des groupes.
Congruence relationIn abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes (or congruence classes) for the relation. The prototypical example of a congruence relation is congruence modulo on the set of integers.
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Noyau (algèbre)En mathématiques et plus particulièrement en algèbre générale, le noyau d'un morphisme mesure la non-injectivité d'un morphisme. Dans de nombreux cas, le noyau d'un morphisme est un sous-ensemble de l'ensemble de définition du morphisme : l'ensemble des éléments qui sont envoyés sur l'élément neutre de l'ensemble d'arrivée. Dans des contextes plus généraux, le noyau est interprété comme une relation d'équivalence sur l'ensemble de définition : la relation qui relie les éléments qui sont envoyés sur une même par le morphisme.
Anneau quotientEn mathématiques, un anneau quotient est un anneau qu'on construit sur l'ensemble quotient d'un anneau par un de ses idéaux bilatères. Soit A un anneau. L'addition et la multiplication de A sont compatibles avec une relation d'équivalence sur A si (et seulement si) celle-ci est de la forme : x ~ y ⇔ x – y ∈ I, pour un certain idéal bilatère I de A. On peut alors munir l'ensemble quotient A/I de l'addition et de la multiplication quotients de celles de A : Ceci munit A/I d'une structure d'anneau, appelé l'anneau quotient de A par I (son groupe additif est le groupe quotient de (A, +) par I).
Noyau (théorie des catégories)La théorie des catégories est une théorie unificatrice des Mathématiques. La notion de noyau est une notion centrale en algèbre. Ici, le concept de noyau est un concept général applicable à de nombreuses branches des mathématiques abstraites. Considérons dans une catégorie deux flèches et de même source et de même but . Une flèche de but est dite noyau ou égalisateur du couple si elle vérifie les deux propriétés suivantes : (1) On a uk=vk (2) Pour toute flèche telle que l'on ait , il existe une flèche unique telle que .
Emmy NoetherAmalie Emmy Noether ( – ) est une mathématicienne allemande spécialiste d'algèbre abstraite et de physique théorique. Considérée par Albert Einstein comme , elle a révolutionné les théories des anneaux, des corps et des algèbres. En physique, le théorème de Noether explique le lien fondamental entre la symétrie et les lois de conservation et est considéré comme aussi important que la théorie de la relativité. Emmy Noether naît dans une famille juive d'Erlangen (à l'époque dans le royaume de Bavière).
Théorie des anneauxEn mathématiques, la théorie des anneaux porte sur l'étude de structures algébriques qui imitent et étendent les entiers relatifs, appelées anneaux. Cette étude s'intéresse notamment à la classification de ces structures, leurs représentations, et leurs propriétés. Développée à partir de la fin du siècle, notamment sous l'impulsion de David Hilbert et Emmy Noether, la théorie des anneaux s'est trouvée être fondamentale pour le développement des mathématiques au siècle, au travers de la géométrie algébrique et de la théorie des nombres notamment, et continue de jouer un rôle central en mathématiques, mais aussi en cryptographie et en physique.