Anneau (mathématiques)vignette|Richard Dedekind - 1870 En algèbre, un anneau est un ensemble muni de deux lois de composition interne appelées addition et multiplication, qui vérifient des propriétés analogues à celles de ces opérations sur les entiers relatifs. Plus précisément, deux définitions sont représentées dans la littérature mathématique, selon la considération d'un élément neutre : la majorité des sources récentes définissent un « anneau » comme un anneau unitaire, avec la multiplication ayant un élément neutre ; tandis que, selon de nombreux ouvrages, la présence d'une unité multiplicative n'est pas requise, et ce type d'anneau est ailleurs dénommé pseudo-anneau.
Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
Théorème du rangEn mathématiques, et plus précisément en algèbre linéaire, le théorème du rang lie le rang d'une application linéaire et la dimension de son noyau. C'est un corollaire d'un théorème d'isomorphisme. Il peut être interprété par la notion d'indice d'application linéaire. En dimension finie, il permet notamment de caractériser l'inversibilité d'une application linéaire ou d'une matrice par son rang. vignette|Le théorème du rang.
Sous-groupe normalEn théorie des groupes, un sous-groupe normal (également appelé sous-groupe distingué ou sous-groupe invariantLien web|langue=fr|titre=Introduction à la théorie des groupes et de leurs représentations|auteur=Jean-Bernard Zuber|url=) H d'un groupe G est un sous-groupe globalement stable par l'action de G sur lui-même par conjugaison. Les sous-groupes normaux interviennent naturellement dans la définition du quotient d'un groupe. Les sous-groupes normaux de G sont exactement les noyaux des morphismes définis sur G.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Centre d'un groupeEn théorie des groupes, on appelle centre d'un groupe G l'ensemble des éléments de G qui commutent avec tous les autres. Soit G un groupe, noté multiplicativement. Son centre Z est Dans G, Z est un sous-groupe normal — comme noyau du morphisme de groupes ι ci-dessous — et même un sous-groupe caractéristique. Tout sous-groupe de Z est sous-groupe normal de G. Z est abélien. Le centre d'un groupe abélien G est le groupe G entier, c'est-à-dire : Z = G. Le centre du groupe alterné A est trivial pour n ≥ 4.
CentralisateurEn mathématiques, et plus précisément en théorie des groupes, le centralisateur d'une partie X d'un groupe G est le sous-groupe de G formé par les éléments de G qui commutent avec tout élément de X. Soient G un groupe et x un élément de G. Le centralisateur de x dans G, noté CG(x) (ou C(x) si le contexte n'est pas ambigu) est, par définition, l'ensemble des éléments de G qui commutent avec x. Cet ensemble est un sous-groupe de G.
Module quotientEn mathématiques, un module quotient est le module obtenu en quotientant un module sur un anneau par un de ses sous-modules. Soient M un module sur un anneau A et N un sous-module de M. Le groupe (M,+) étant abélien, son sous-groupe (N,+) est normal, ce qui permet de définir le groupe quotient (M/N,+). Sur ce groupe (M/N,+), qui est abélien, il existe une unique loi externe faisant de M/N un A-module et telle que la projection canonique soit non seulement un morphisme de groupes, mais un morphisme de A-modules : M/M est le module trivial {0}.