IdempotenceEn mathématiques et en informatique, l'idempotence signifie qu'une opération a le même effet qu'on l'applique une ou plusieurs fois. Par exemple, la valeur absolue est idempotente : , les deux membres étant égaux à 5. On retrouve ce concept en algèbre générale, en particulier dans la théorie des opérateurs de projection et des opérateurs de clôture, mais aussi en informatique, en particulier en programmation fonctionnelle. Un élément x d'un magma (M, •) est dit idempotent si : x • x = x.
Application identitéEn mathématiques, l'application identité ou la fonction identité est l'application qui n'a aucun effet lorsqu'elle est appliquée à un élément : elle renvoie l'argument sur lui-même. Formellement, sur un ensemble , c'est l'application : Le graphe de l'application identité de est appelé la diagonale du produit cartésien . Pour l'ensemble des réels, ce graphe est la première bissectrice du plan euclidien. vignette|Graphe de la fonction identité sur . L'application identité de est notée ou .
Espace vectorielvignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Structure algébriqueEn mathématiques, une structure algébrique est définie axiomatiquement par une ou plusieurs opérations sur un ensemble (dites internes), éventuellement muni d’autres opérations (externes) dépendant d’autres ensembles, toutes ces opérations satisfaisant certaines relations telles que l’associativité, la commutativité ou la distributivité. La structure de groupe qui émerge progressivement au , avec une seule opération interne et quelques propriétés se formalise au début du avec une kyrielle de structures d’algèbre générale moins restrictives (monoïde) ou au contraire enrichies par une seconde opération (anneau, corps, algèbre de Boole.
Suite (mathématiques)vignette|Exemple de suite : les points bleus représentent ses termes. En mathématiques, une suite est une famille d'éléments — appelés ses « termes » — indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain entier, ce dernier étant appelé « longueur » de la suite. Lorsque tous les éléments d'une suite (infinie) appartiennent à un même ensemble , cette suite peut être assimilée à une application de dans .
DistributivitéEn mathématiques, plus précisément en arithmétique et en algèbre générale, la distributivité d'une opération par rapport à une autre est une généralisation de la propriété élémentaire : « le produit d'une somme est égal à la somme des produits ». Par exemple, dans l'expression 2 × (5 + 3) = (2×5) + (2×3), le facteur 2 est distribué à chacun des deux termes de la somme 5 + 3. L'égalité est alors bien vérifiée : à gauche 2 × 8 = 16, à droite 10 + 6 = 16.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Espace fonctionnelEn mathématiques, un espace fonctionnel est un ensemble d'applications d'une certaine forme d'un ensemble vers un ensemble Il est appelé « espace » car, selon les cas, il peut être un espace topologique, un espace vectoriel, ou les deux. Les espaces fonctionnels apparaissent dans différents domaines des mathématiques : en théorie des ensembles, l'ensemble des parties d'un ensemble peut être identifié avec l'ensemble des fonctions de à valeurs dans , noté .
Order theoryOrder theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Ensemble d'arrivéeEn mathématiques, pour une application ou une fonctionSelon les sources, il y a distinction ou non entre les notions de fonction et dapplication'', voir Application_(mathématiques)#Fonction_et_application pour plus de détails. Ce qui est énoncé dans cet article est valable que la distinction soit faite ou non. donnée f : A → B, l'ensemble B est appelé l'ensemble d'arrivée (on dit parfois le but de f ou le codomaine''' de f). L'ensemble d'arrivée ne doit pas être confondu avec l' f(A) de f, qui est en général seulement un sous-ensemble de B.