Droite (mathématiques)En géométrie, le mot droite désigne un objet formé de points alignés. Une droite est illimitée des deux côtés, et sans épaisseur (dans la pratique, elle est représentée, sur une feuille, par une ligne droite ayant bien entendu des limites — celles de la feuille — et une épaisseur — celle du crayon). Pour les Anciens, la droite était un concept « allant de soi », si « évident » que l'on négligeait de préciser de quoi l'on parlait. L'un des premiers à formaliser la notion de droite fut le Grec Euclide dans ses Éléments.
GéodésiqueEn géométrie, une géodésique est la généralisation d'une ligne droite du plan ou de l'espace euclidien, au cadre des surfaces, ou plus généralement des variétés ou des espaces métriques. Elles sont étroitement liées à la notion de plus court chemin relativement à un calcul de distance sur un tel espace. Ainsi, le plus court chemin (ou les plus courts chemins, s'il en existe plusieurs), entre deux points est toujours une géodésique. Mais plus précisément, on appelle géodésique une courbe qui, à l'échelle locale, relie les points en minimisant la distance.
Parallélisme (géométrie)En géométrie affine, le parallélisme est une propriété relative aux droites, aux plans ou plus généralement aux sous-espaces affines. La notion de parallélisme a été initialement formulée par Euclide dans ses Éléments, mais sa présentation a évolué dans le temps, passant d'une définition axiomatique à une simple définition. La notion de parallélisme est introduite dans le Livre I des Éléments d'Euclide. Pour Euclide, une droite s'apparente plutôt à un segment.
Rayon (géométrie)En géométrie, un rayon d'un cercle ou d'une sphère est un segment de droite quelconque reliant son centre à sa circonférence. Par extension, le rayon d'un cercle ou d'une sphère est la longueur de chacun de ces segments. Le rayon est la moitié du diamètre. En sciences et en ingénierie, le terme rayon de courbure est souvent utilisé comme synonyme de rayon. Plus généralement le rayon d'un objet (par exemple un cylindre, un polygone, un graphe ou une pièce mécanique) est la distance de son centre ou axe de symétrie à ses points de surface les plus éloignés.
Longueur d'un arcthumb|Camille Jordan est l'auteur de la définition la plus courante de la longueur d'un arc. En géométrie, la question de la longueur d'un arc est simple à concevoir (intuitive). L'idée d'arc correspond à celle d'une ligne, ou d'une trajectoire d'un point dans un plan ou l'espace par exemple. Sa longueur peut être vue comme la distance parcourue par un point matériel suivant cette trajectoire ou encore comme la longueur d'un fil prenant exactement la place de cette ligne. La longueur d'un arc est, soit un nombre positif, soit l'infini.
MéridienEn géographie, un méridien est une demi-ellipse imaginaire tracée sur le globe terrestre reliant les pôles géographiques. Tous les points de la Terre situés sur un même méridien ont la même longitude. On parle également d'arc de méridien entre deux points ayant une latitude différente. En astronomie, un méridien est un grand cercle imaginaire tracé sur la sphère céleste, passant par les pôles célestes. L'ascension droite, par exemple, est repérée par les méridiens célestes.
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
Distance du grand cercleLa distance du grand cercle, également appelée distance orthodromique, est la plus courte distance entre deux points sur une sphère. La surface de la Terre étant approximativement sphérique, la distance du grand cercle est généralement employée pour mesurer la distance entre deux points à sa surface, à partir de leur longitude et leur latitude. R est le rayon de la sphère (le rayon de la Terre vaut environ ). δ est la latitude (en radians). λ est la longitude (en radians). Sur une sphère de rayon R, la dist
Disque (géométrie)vignette|Disque. Un disque est une figure géométrique dans un plan (ou plutôt une surface plane) formée des points situés à une distance inférieure ou égale, à une valeur donnée R d'un point O nommé centre. R est le rayon du disque. La frontière du disque est un cercle de centre O et de rayon R appelé Périmètre. Le disque est fermé si la frontière est incluse, et ouvert si elle n'en fait pas partie. Dans le langage courant, on appelle disque un objet plat circulaire, qui est plus exactement un cylindre de révolution d'épaisseur faible devant son rayon.
Sphère célestevignette|Sphère céleste entourant la Terre. La sphère céleste est une construction géométrique représentant le ciel tel qu'il apparaît à un observateur isolé. Incapable de déterminer les distances qui le séparent des astres, il imagine qu'ils sont situés sur la surface d'une sphère visible : le ciel nocturne. C'est une sphère imaginaire, de rayon arbitraire et dont le centre est l'origine du système de coordonnées célestes de référence considéré.