Module semi-simplethumb|Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi-simple ou complètement réductible s'il est somme directe de sous-modules simples ou, ce qui est équivalent, si chacun de ses sous-modules possède un supplémentaire. Les propriétés des modules semi-simples sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des anneaux semi-simples et pour la théorie des représentations des groupes.
Module simpleUn module M sur un anneau A est dit simple ou irréductible si M n'est pas le module nul et il n'existe pas de sous-modules de M en dehors de {0} et M. Les Z-modules simples sont les groupes abéliens simples, c'est-à-dire les groupes cycliques d'ordre premier. Les espaces vectoriels simples (sur un corps non nécessairement commutatif) sont les droites vectorielles. Étant donné un anneau A et I un idéal à gauche non nul de A, I est un A-module simple si et seulement si I est un idéal minimal à gauche.
Anneau nulEn mathématiques, on appelle anneau nul ou anneau trivial l'anneau A réduit au singleton . On a : Cet anneau est commutatif. Son élément neutre pour la multiplication, noté habituellement 1A dans un anneau quelconque, est ici égal à 0A, l'élément neutre pour l'addition. Réciproquement, le seul anneau A vérifiant 1A = 0A est l'anneau nul puisqu'alors, pour tout élément de A, on a : L'anneau nul est l'objet final dans la catégorie des anneaux unitaires (i.e.
Anneau simpleEn mathématiques, un anneau simple est une des structures algébriques utilisées en algèbre générale. Un anneau est dit simple s'il est non nul et n'admet pas d'autres idéaux bilatères que {0} et lui-même. Un anneau commutatif est simple si et seulement si c'est un corps commutatif. Plus généralement, un corps (non nécessairement commutatif) est un anneau simple, et l'anneau des matrices carrées d'ordre n à coefficients dans un corps est simple.
NoethérienEn mathématiques, l'adjectif « noethérien » est utilisé pour décrire des objets vérifiant la condition de chaîne ascendante ou descendante sur un certain type de sous-objets ; en particulier : un groupe qui vérifie la condition de chaîne ascendante sur les sous-groupes ; Anneau noethérien, un anneau qui vérifie la condition de chaîne ascendante sur les idéaux ; Module noethérien, un module qui vérifie la condition de chaîne ascendante sur les sous-modules ; Espace noethérien, un espace topologique qui vérif
Matrix ringIn abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Noetherian moduleIn abstract algebra, a Noetherian module is a module that satisfies the ascending chain condition on its submodules, where the submodules are partially ordered by inclusion. Historically, Hilbert was the first mathematician to work with the properties of finitely generated submodules. He proved an important theorem known as Hilbert's basis theorem which says that any ideal in the multivariate polynomial ring of an arbitrary field is finitely generated.
Module injectifEn mathématiques, et plus spécifiquement en algèbre homologique, un module injectif est un module Q (à gauche par exemple) sur un anneau A tel que pour tout morphisme injectif f : X → Y entre deux A-modules (à gauche) et pour tout morphisme g : X → Q, il existe un morphisme h : Y → Q tel que hf = g, c'est-à-dire tel que le diagramme suivant commute : center Autrement dit : Q est injectif si pour tout module Y, tout morphisme d'un sous-module de Y vers Q s'étend à Y.
NilradicalEn algèbre, le nilradical d'un anneau commutatif est un idéal particulier de cet anneau. Soit A un anneau commutatif. Le nilradical de A est l'ensemble des éléments nilpotents de A. En d'autres termes, c'est l'idéal radical de l'idéal réduit à 0. En notant Nil(A) le nilradical de A, on a les énoncés suivants : Nil(A) est un idéal ; l'anneau quotient A/Nil(A) est réduit, c'est-à-dire qu'il n'a pas d'éléments nilpotents hormis 0 ; Nil(A) est inclus dans chaque idéal premier de A ; si s est un élément de A qui n'appartient pas à Nil(A), alors il existe un idéal premier auquel s n'appartient pas ; si A n'est pas l'anneau nul, Nil(A) est l'intersection de tous les idéaux premiers de A et même, de tous ses .
Localisation (mathématiques)En algèbre, la localisation est une des opérations de base de l'algèbre commutative. C'est une méthode qui construit à partir d'un anneau commutatif un nouvel anneau. La construction du corps des fractions est un cas particulier de la localisation. La localisation consiste à rendre inversibles les éléments d'une partie (« partie multiplicative ») de l'anneau. L'exemple le plus connu est le corps des fractions d'un anneau intègre qui se construit en rendant inversibles tous les éléments non nuls de l'anneau.