Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Cohomologie galoisienneEn mathématiques, la cohomologie galoisienne est l'étude de l'action d'un groupe de Galois sur certains groupes, par des méthodes cohomologiques. Elle permet d'obtenir des résultats à la fois sur le groupe de Galois agissant, et sur le groupe sur lequel il agit. En particulier, le groupe de Galois d'une extension de corps de nombres L/K agit naturellement par exemple sur le groupe multiplicatif L, mais aussi sur le groupe des unités de l'anneau des entiers du corps L, ou sur son groupe des classes.
Helmut HasseHelmut Hasse (1898-1979) est un mathématicien allemand. Il est un des plus grands algébristes allemands de son époque, connu notamment pour ses travaux sur la théorie des nombres. Hasse est le fils du juge Paul Reinhard Hasse et de Margaret Quentin, née à Milwaukee, mais élevée à Kassel. Il est scolarisé à Kassel et à Berlin-Wilmersdorf, après que sa famille ait déménagé à Berlin en 1913.
Corps globalEn mathématiques, un corps global est un corps d'un des types suivants : un corps de nombres, c'est-à-dire une extension finie de Q un corps de fonctions d'une courbe algébrique sur un corps fini, c'est-à-dire une extension finie du corps k(t) des fractions rationnelles à une variable à coefficients dans un corps fini k (de façon équivalente, c'est un corps de type fini et de degré de transcendance 1 sur un corps fini). Emil Artin et George Whaples ont donné une caractérisation axiomatique de ces corps via la théorie des valuations.
Emmy NoetherAmalie Emmy Noether ( – ) est une mathématicienne allemande spécialiste d'algèbre abstraite et de physique théorique. Considérée par Albert Einstein comme , elle a révolutionné les théories des anneaux, des corps et des algèbres. En physique, le théorème de Noether explique le lien fondamental entre la symétrie et les lois de conservation et est considéré comme aussi important que la théorie de la relativité. Emmy Noether naît dans une famille juive d'Erlangen (à l'époque dans le royaume de Bavière).
Nombre p-adiquevignette|Les entiers 3-adiques, avec des représentations obtenues par dualité de Pontriaguine. En mathématiques, et plus particulièrement en théorie des nombres, pour un nombre premier fixé, les nombres p-adiques forment une extension particulière du corps des nombres rationnels, découverte par Kurt Hensel en 1897. Le corps commutatif des nombres -adiques peut être construit par complétion de , d'une façon analogue à la construction des nombres réels par les suites de Cauchy, mais pour une valeur absolue moins familière, nommée valeur absolue -adique.
Anneau adéliqueEn mathématiques et dans la théorie des nombres, l'anneau adélique, ou anneau des adèles, est un anneau topologique contenant le corps des nombres rationnels (ou, plus généralement, un corps de nombres algébriques), construit à l'aide de toutes les complétions du corps. Le mot « adèle » est une abréviation pour « additive idele » (« idèle additive »). . Les adèles étaient appelées vecteurs de valuation ou répartitions avant 1950.
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Point rationnelEn théorie des nombres et géométrie algébrique, les points rationnels d'une variété algébrique définie sur un corps sont, lorsque X est définie par un système d'équations polynomiales, les solutions dans k de ce système. Soit une variété algébrique définie sur un corps . Un point est appelé un point rationnel si le corps résiduel de X en x est égal à . Cela revient à dire que les coordonnées du point dans une carte locale affine appartiennent toutes à .