Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
SymétrisationEn mathématiques, la symétrisation d'un monoïde est une opération de construction d'un groupe dans lequel se projette le monoïde initial, de manière naturelle. On parle parfois de groupe de Grothendieck du monoïde considéré. Ce procédé est notamment appliqué pour construire l'ensemble des entiers relatifs à partir de celui des entiers naturels. Si le monoïde de départ est muni d'une seconde loi de composition qui en fait un semi-anneau commutatif, son symétrisé est un anneau commutatif.
Magma (algèbre)En mathématiques, un magma est une des structures algébriques utilisées en algèbre générale. Un magma est par définition un ensemble muni d'une loi de composition interne. Un magma est un ensemble muni d'une loi de composition interne , noté alors ou simplement . Aucun axiome n'est imposé. La loi de composition peut être notée additivement, multiplicativement, mais aussi sans aucun signe, par simple juxtaposition.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
QuasigroupeEn mathématiques, et plus précisément en algèbre générale, un quasigroupe est un ensemble muni d'une loi de composition interne (un magma) pour laquelle (en pensant cette loi comme une multiplication), il est possible de diviser, à droite comme à gauche, le quotient à droite et le quotient à gauche étant uniques. En d'autre termes l'opération de multiplication à droite est bijective, de même que celle de multiplication à gauche. La loi n'est pas nécessairement associative, et si elle l'est, le quasigroupe est un groupe.
Table de CayleyUne table de Cayley est un tableau à double entrée. Lorsqu'un ensemble fini E est muni d'une loi de composition interne •, il est possible de créer un tableau qui présente, pour tous les éléments a et b de E, les résultats obtenus par cette loi • : à l'intersection de la ligne représentant a et de la colonne b se trouve a•b. Le tableau ainsi constitué est appelé table de Cayley du magma (E,•). Cette présentation est semblable à la table de multiplication et à la table d'addition des écoliers.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Demi-groupeEn mathématiques, plus précisément en algèbre générale, un demi-groupe (ou semi-groupe) est une structure algébrique constituée d'un ensemble muni d'une loi de composition interne associative. Il est dit commutatif si sa loi est de plus commutative. Un demi-groupe est un magma associatif. Un monoïde est un demi-groupe unifère, c'est-à-dire possédant un élément neutre. L'ensemble des entiers naturels non nuls muni de l'addition est un demi-groupe. Tout monoïde est un demi-groupe. Tout groupe est un demi-groupe.
Élément symétriqueEn mathématiques, la notion d'élément symétrique généralise les concepts d'opposé en rapport avec l'addition et d'inverse en rapport avec la multiplication. Soit E un ensemble muni d'une loi de composition interne admettant un élément neutre . Soient deux éléments et de E. Si , est dit élément symétrique à gauche de et est dit élément symétrique à droite de . Si , est dit élément symétrique de .
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).