Explore la théorie des ramifications, les champs de résidus, les extensions de Galois et les groupes de décomposition dans la théorie des nombres algébriques.
Explique la factorisation des idéaux dans un anneau de Dedekind en utilisant des idéaux premiers et couvre l'indice de ramification, les champs résiduels, le degré d'inertie et les propriétés des anneaux de Dedekind.
Explore les groupes de décomposition, les sous-groupes d'inertie, la théorie de Galois, les nombres premiers non-ramifiés et les champs cyclotomiques dans les actions de groupe et les extensions de champ.