Théorie des anneauxEn mathématiques, la théorie des anneaux porte sur l'étude de structures algébriques qui imitent et étendent les entiers relatifs, appelées anneaux. Cette étude s'intéresse notamment à la classification de ces structures, leurs représentations, et leurs propriétés. Développée à partir de la fin du siècle, notamment sous l'impulsion de David Hilbert et Emmy Noether, la théorie des anneaux s'est trouvée être fondamentale pour le développement des mathématiques au siècle, au travers de la géométrie algébrique et de la théorie des nombres notamment, et continue de jouer un rôle central en mathématiques, mais aussi en cryptographie et en physique.
Emmy NoetherAmalie Emmy Noether ( – ) est une mathématicienne allemande spécialiste d'algèbre abstraite et de physique théorique. Considérée par Albert Einstein comme , elle a révolutionné les théories des anneaux, des corps et des algèbres. En physique, le théorème de Noether explique le lien fondamental entre la symétrie et les lois de conservation et est considéré comme aussi important que la théorie de la relativité. Emmy Noether naît dans une famille juive d'Erlangen (à l'époque dans le royaume de Bavière).
Théorème de Frobenius (algèbre)En mathématiques, plus spécifiquement en algèbre, le théorème de Frobenius, démontré par Ferdinand Georg Frobenius en 1877, caractérise les algèbres associatives à division de dimension finie sur le corps commutatif R des réels. Il n'y en a que trois (à isomorphisme près) : le corps R des réels, celui C des complexes et le corps non commutatif H des quaternions. Le théorème de Frobenius généralisé de Hurwitz établit que si l'on enlève les contraintes d'associativité et de finitude mais qu'on rajoute celle d'être une algèbre de composition, on ne trouve qu'une quatrième R-algèbre à division : celle des octonions.
Somme directeEn mathématiques, et plus précisément en algèbre, le terme de somme directe désigne des ensembles munis de certaines structures, souvent construits à partir du produit cartésien d'autres ensembles du même type, et vérifiant la propriété universelle de la somme (ou « coproduit ») au sens des catégories. Produit direct (groupes)#Somme directe interne d'une famille de sous-groupes abéliensSomme directe interne de sous-groupes abéliens Soient F et F deux sous-espaces vectoriels d'un espace vectoriel E.
Théorème de Frobenius généraliséEn mathématiques, diverses versions de théorèmes de Frobenius généralisés ont étendu progressivement le théorème de Frobenius de 1877. Ce sont des théorèmes d'algèbre générale qui classifient les algèbres unifères à division de dimension finie sur le corps commutatif R des réels. Moyennant certaines restrictions, il n'y en a que quatre : R lui-même, C (complexes), H (quaternions) et O (octonions). Toutes les algèbres sont ici implicitement supposées unifères, et leur unicité s'entend à isomorphisme près.
Algèbre sur un corpsEn mathématiques, et plus précisément en algèbre générale, une algèbre sur un corps commutatif K, ou simplement une K-algèbre, est une structure algébrique (A, +, ·, ×) telle que : (A, +, ·) est un espace vectoriel sur K ; la loi × est définie de A × A dans A (loi de composition interne) ; la loi × est bilinéaire.
Degenerate bilinear formIn mathematics, specifically linear algebra, a degenerate bilinear form f (x, y ) on a vector space V is a bilinear form such that the map from V to V∗ (the dual space of V ) given by v ↦ (x ↦ f (x, v )) is not an isomorphism. An equivalent definition when V is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero x in V such that for all A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that is an isomorphism, or equivalently in finite dimensions, if and only if for all implies that .
Nombre bicomplexeEn mathématiques, les nombres bicomplexes sont les nombres multicomplexes de symbole . C’est un nombre écrit sous la forme a + b i + c i + d j, où i, i et j sont des unités imaginaires qui commutent et où j = i i vérifie j = i i = 1. Basé sur les règles de la multiplication des unités imaginaires, si A = a + b i et B = c + d i, alors le nombre bicomplexe peut être écrit A + B i : les nombres bicomplexes sont similaires aux nombres complexes, mais les parties réelles de leur forme cartésienne sont complexes plutôt que réelles.
Anneau topologiqueEn mathématiques, un anneau topologique est un anneau muni d'une topologie compatible avec les opérations internes, c'est-à-dire telle que l'addition, l'application opposée et la multiplication soient continues. Un corps topologique est un corps muni d'une topologie qui rend continues l'addition, la multiplication et l'application inverse. Ces structures étendent la notion de groupe topologique. Tous les corps de nombres usuels (rationnels, réels, complexes, p-adiques) ont une ou plusieurs topologies classiques qui en font des corps topologiques.
Octonion déployéEn mathématiques, les octonions déployés ou octonions fendus sont une extension non associative des quaternions (ou des coquaternions). Ils diffèrent des octonions par la signature de la forme quadratique : les octonions déployés ont une signature mixte (4,4) alors que les octonions ont une signature définie positive (8,0). Les octonions et les octonions déployés peuvent être obtenus par la construction de Cayley–Dickson en définissant une multiplication sur les paires de quaternions.