Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Théorème intégral de CauchyEn analyse complexe, le théorème intégral de Cauchy, ou de Cauchy-Goursat, est un important résultat concernant les intégrales curvilignes de fonctions holomorphes dans le plan complexe. D'après ce théorème, si deux chemins différents relient les deux mêmes points et si une fonction est holomorphe « entre » les deux chemins, alors les deux intégrales de cette fonction suivant ces chemins sont égales. Le théorème est habituellement formulé pour les lacets (c'est-à-dire les chemins dont le point de départ est confondu avec le point d'arrivée) de la manière suivante.
Transformation conformeEn mathématiques, et plus précisément en géométrie et en analyse complexe, une transformation conforme est une bijection qui conserve localement les angles, c'est-à-dire qui se comporte au voisinage de chaque point où elle est définie presque comme une similitude. Dans le plan, les transformations conformes qui conservent les angles orientés ont une telle utilité qu'il est fréquent qu'elles soient les seules baptisées du terme de conformes. Elles se confondent alors avec les bijections holomorphes.
HomotopieEn mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.
Fonction holomorphevignette|Une grille et son image par f d'une fonction holomorphe. En analyse complexe, une fonction holomorphe est une fonction à valeurs complexes, définie et dérivable en tout point d'un sous-ensemble ouvert du plan complexe C. Cette condition est beaucoup plus forte que la dérivabilité réelle. Elle entraîne (via la théorie de Cauchy) que la fonction est analytique : elle est infiniment dérivable et est égale, au voisinage de tout point de l'ouvert, à la somme de sa série de Taylor.
Disque unitédroite|vignette|Disque unité ouvert avec la distance euclidienne. En mathématiques, le disque unité ouvert autour de P (où P est un point donné dans le plan), est l'ensemble des points dont la distance à P est inférieure à 1 : Le disque unité fermé autour de P est l'ensemble des points dont la distance à P est inférieure ou égale à un : Les disques unités sont des cas particuliers de disques et de boules unités ; en tant que tels, ils contiennent l'intérieur du cercle unité et, dans le cas du disque unité fermé, le cercle unité lui-même.
Théorème de l'application conformeEn mathématiques, et plus précisément en analyse complexe, le théorème de l'application conforme, dû à Bernhard Riemann, assure que toutes les parties ouvertes simplement connexes du plan complexe qui ne sont ni vides ni égales au plan tout entier sont conformes entre elles. Le théorème fut énoncé (sous l'hypothèse plus forte d'une frontière formés d'arcs différentiables) par Bernhard Riemann dans sa thèse, en 1851.
Connexité (mathématiques)La connexité est une notion de topologie qui formalise le concept d'« objet d'un seul tenant ». Un objet est dit connexe s'il est fait d'un seul « morceau ». Dans le cas contraire, chacun des morceaux est une composante connexe de l'objet étudié. Soit un espace topologique E. Les quatre propositions suivantes sont équivalentes : E n'est pas la réunion de deux ouverts non vides disjoints ; E n'est pas la réunion de deux fermés non vides disjoints ; les seuls ouverts-fermés de E sont ∅ et E ; toute application continue de E dans un ensemble à deux éléments muni de la topologie discrète est constante.
Groupe fondamentalEn mathématiques, et plus spécifiquement en topologie algébrique, le groupe fondamental, ou groupe de Poincaré, est un invariant topologique. Le groupe fondamental d'un espace topologique pointé (X, d) est, par définition, l'ensemble des classes d'homotopie de lacets (chemins fermés) de X de base d. C'est un groupe dont la loi de composition interne est induite par la concaténation (juxtaposition) des arcs. L'examen des groupes fondamentaux permet de prouver que deux espaces particuliers ne peuvent être homéomorphes (c'est-à-dire topologiquement équivalents).
Topologie quotientEn mathématiques, la topologie quotient consiste intuitivement à créer une topologie en collant certains points d'un espace donné sur d'autres, par le biais d'une relation d'équivalence bien choisie. Cela est souvent fait dans le but de construire de nouveaux espaces à partir d'anciens. On parle alors d'espace topologique quotient. Beaucoup d'espaces intéressants, le cercle, les tores, le ruban de Möbius, les espaces projectifs sont définis comme des quotients.