Concepts associés (25)
Quadrangle complet
En géométrie plane, un quadrangle complet (parfois, simplement quadrangle) est la figure formée par quatre points A, B, C et D, tels que trois quelconques d'entre eux ne soient pas alignés : ce sont les sommets du quadrangle. Les six droites joignant ces points deux à deux sont les côtés du quadrangle. Deux côtés qui n'ont pas de sommet en commun sont dits opposés. Deux côtés opposés (non parallèles) ont un point commun appelé point diagonal du quadrangle.
Perspectivity
In geometry and in its applications to drawing, a perspectivity is the formation of an image in a picture plane of a scene viewed from a fixed point. The science of graphical perspective uses perspectivities to make realistic images in proper proportion. According to Kirsti Andersen, the first author to describe perspectivity was Leon Alberti in his De Pictura (1435). In English, Brook Taylor presented his Linear Perspective in 1715, where he explained "Perspective is the Art of drawing on a Plane the Appearances of any Figures, by the Rules of Geometry".
Faisceau (géométrie)
En géométrie, un faisceau est une famille d'objets géométriques partageant une propriété commune, par exemple l'ensemble de droites passant par un même point dans le plan, ou l'ensemble de cercles passant par deux points dans le plan. Si la définition d'un faisceau est assez vague, la caractéristique commune est que le faisceau est complètement déterminé par deux de ses éléments. De façon analogue, un ensemble d'objets géométriques déterminés par trois éléments quelconques est appelé un fibré.
Inversion géométrique
En géométrie, l'inversion géométrique est l'étude de l'inversion, une transformation du plan euclidien qui envoie des cercles ou des lignes vers d'autres cercles ou lignes et qui préserve les angles entre les courbes de croisement. De nombreux problèmes difficiles en géométrie deviennent beaucoup plus faciles à résoudre lorsqu'une inversion est appliquée. L'inversion semble avoir été découverte par un certain nombre de personnes à la même époque, dont Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs et Ingram (1842-3) et Kelvin (1845).
Jean-Victor Poncelet
thumb|L'école Fabert (Metz), où Poncelet fut interne. Jean-Victor Poncelet (1788-1867) est un mathématicien, ingénieur et général français. Général commandant l'École polytechnique de 1848 à 1850, il inventa un modèle de turbine et un système de pont-levis à contre-poids variable, qui porte son nom. Jean-Victor Poncelet naquit le , à Metz, une place-forte des Trois-Évêchés. Après ses humanités au Lycée Fabert de Metz, il choisit naturellement la carrière des armes.
Forme sesquilinéaire
En algèbre, une forme sesquilinéaire sur un espace vectoriel complexe E est une application de E × E dans C, linéaire selon l'une des variables et semi-linéaire par rapport à l'autre variable. Elle possède donc une propriété de « un-et-demi » linéarité (cf. préfixe sesqui, qui signifie "dans un rapport de un et demi"). C'est l'équivalent complexe des formes bilinéaires réelles. Les formes sesquilinéaires les plus étudiées sont les formes hermitiennes qui correspondent aux formes bilinéaires (réelles) symétriques.
Droite à l'infini
Dans le plan projectif, il est possible de définir un plan affine en choisissant une droite projective quelconque, que l'on appelle alors droite à l'infini associée à ce plan affine. Deux droites affines strictement parallèles correspondent à deux droites projectives qui s'intersectent en un point situé sur la droite à l'infini, dit point à l'infini. Réciproquement, il est toujours possible de compléter un plan affine par une droite à l'infini de façon à obtenir un plan projectif, dit complété projectif de ce plan affine.
Théorème de Ménélaüs
En mathématiques, et plus précisément en géométrie, le théorème de Ménélaüs, dû à Ménélaüs d'Alexandrie, précise les relations existant entre des longueurs découpées dans un triangle par une sécante. Il en existe une version plane et une version pour le triangle sphérique. Soit un triangle ABC, et trois points D, E et F des droites (BC), (AC) et (AB) respectivement, différents des sommets du triangle. Les points D, E et F sont alignés si et seulement si : Une telle droite est appelée une ménélienne — ou une transversale — du triangle ABC.
Théorème de Brianchon
Le théorème de Brianchon s'énonce ainsi : Ce théorème est dû au mathématicien français Charles Julien Brianchon (1783-1864). C'est exactement le dual du théorème de Pascal. Il s'agit dans les deux cas de propriétés projectives des coniques, propriétés que l'on étudie sans équations, sans angles ni distances, uniquement avec les alignements de points et les intersections de droites. Comme pour le théorème de Pascal, il existe des dégénérations du théorème de Brianchon : en faisant coïncider deux tangentes successives, leur point de jonction devient un point de tangence de la conique.
Projective range
In mathematics, a projective range is a set of points in projective geometry considered in a unified fashion. A projective range may be a projective line or a conic. A projective range is the dual of a pencil of lines on a given point. For instance, a correlation interchanges the points of a projective range with the lines of a pencil. A projectivity is said to act from one range to another, though the two ranges may coincide as sets. A projective range expresses projective invariance of the relation of projective harmonic conjugates.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.