Groupe classiqueEn mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques.
MorphismeEn mathématiques, le morphisme est la relative similitude d'objets mathématiques considérés du point de vue de ce qu'ils partagent comme entités ou par leurs relations. En algèbre générale, un morphisme (ou homomorphisme) est une application entre deux structures algébriques de même espèce, c'est-à-dire des ensembles munis de lois de composition interne ou externe (par exemple deux groupes ou deux espaces vectoriels), qui respectent certaines propriétés en passant d'une structure à l'autre.
Ordre (théorie des groupes)En théorie des groupes, une branche des mathématiques, le terme ordre est utilisé dans deux sens intimement liés : L'ordre d'un groupe est le cardinal de son ensemble sous-jacent. Le groupe est dit fini ou infini suivant que son ordre est fini ou infini. Si un élément a d'un groupe G engendre dans G un sous-groupe (monogène) fini d'ordre d, on dit que a est d'ordre fini et, plus précisément, d'ordre d. Si le sous-groupe engendré par a est infini, on dit que a est d'ordre infini.
Groupe completEn mathématiques, et plus particulièrement en théorie des groupes, un groupe G est dit complet si son centre est réduit à l'élément neutre et tous les automorphismes de G sont intérieurs. On démontre que les groupes symétriques Sn sont complets sauf si n est égal à 2 ou à 6. (Dans le cas n = 2, le centre de Sn n'est pas réduit à l'élément neutre et dans le cas n = 6, Sn admet un automorphisme extérieur.) Compte tenu du théorème de Cayley, il en résulte que tout groupe fini peut être plongé dans un groupe complet.
Outer automorphism groupIn mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete. An automorphism of a group that is not inner is called an outer automorphism. The cosets of Inn(G) with respect to outer automorphisms are then the elements of Out(G); this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups.
Multiplicative group of integers modulo nIn modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.
Groupe général linéaireEn mathématiques, le groupe général linéaire — ou groupe linéaire — de degré n d’un corps commutatif K (ou plus généralement d'un anneau commutatif unifère) est le groupe des matrices inversibles de taille n à coefficients dans K, muni du produit matriciel. On le note GL(K) ou GL(n, K) et il représente les automorphismes de l’espace vectoriel K. Ce groupe est non abélien dès lors que n > 1. Lorsque K est un corps commutatif, l’ensemble GL(n, K) est en outre un ouvert pour la topologie de Zariski.
AutomorphismeUn automorphisme est un isomorphisme d'un objet mathématique X dans lui-même. Le plus souvent, c'est une bijection de X dans X qui préserve la « structure » de X. On peut le voir comme une symétrie de X. Les automorphismes de X forment un groupe. La définition abstraite d'un automorphisme est la suivante : c'est un endomorphisme qui est en même temps un isomorphisme. Autrement dit, c'est un morphisme d'un objet X d'une catégorie donnée dans lui-même, qui est également un isomorphisme.
Automorphisme intérieurUn automorphisme intérieur est une notion mathématique utilisée en théorie des groupes. Soient G un groupe et g un élément de G. On appelle automorphisme intérieur associé à g, noté ιg, l'automorphisme de G défini par : Pour un groupe abélien, les automorphismes intérieurs sont triviaux. Plus généralement, l'ensemble des automorphismes intérieurs de G forme un sous-groupe normal du groupe des automorphismes de G, et ce sous-groupe est isomorphe au groupe quotient de G par son centre.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.