Augustin Louis CauchyAugustin Louis, baron Cauchy, né à Paris le et mort à Sceaux le , est un mathématicien français, membre de l’Académie des sciences et professeur à l’École polytechnique. Catholique fervent, il est le fondateur de nombreuses œuvres charitables, dont l’Œuvre des Écoles d’Orient. Royaliste légitimiste, il s’exile volontairement lors de l'avènement de Louis-Philippe, après les Trois Glorieuses. Ses positions politiques et religieuses lui valurent nombre d’oppositions.
Suite généraliséeEn mathématiques, la notion de suite généralisée, ou suite de Moore-Smith, ou filet, étend celle de suite, en indexant les éléments d'une famille par des éléments d'un ensemble ordonné filtrant qui n'est plus nécessairement celui des entiers naturels. Pour tout ensemble X, une suite généralisée d'éléments de X est une famille d'éléments de X indexée par un ensemble ordonné filtrant A. Par filtrant (à droite), on entend que toute paire dans A possède un majorant dans A. Soit un filet dans un ensemble E et, pour tout , .
Espace uniformeEn mathématiques, la notion d'espace uniforme, introduite en 1937 par André Weil, est une généralisation de celle d'espace métrique. Une structure uniforme est une structure qui permet de définir la continuité uniforme. On peut y parvenir de deux manières différentes, l'une en généralisant la notion de distance, l'autre avec une axiomatique proche de celle des espaces topologiques. On montre que ces deux approches sont équivalentes. Un écart sur un ensemble est une application [0, +∞] telle que pour tout : (symétrie); (inégalité triangulaire).
Espace vectoriel topologiqueEn mathématiques, les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures. Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert. Un espace vectoriel topologique (« e.v.t.
Série (mathématiques)En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donné une suite de terme général u, étudier la série de terme général u c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (u), autrement dit la suite de terme général S défini par : L'étude d'une série peut passer par la recherche d'une écriture simplifiée des sommes finies en jeu et par la recherche éventuelle d'une limite finie quand n tend vers l'infini.
Limite d'une suiteEn mathématiques, de manière intuitive, la limite d'une suite est l'élément dont les termes de la suite se rapprochent quand les indices deviennent très grands. Cette définition intuitive n'est guère exploitable car il faudrait pouvoir définir le sens de « se rapprocher ». Cette notion sous-entend l'existence d'une distance (induite par la valeur absolue dans R, par le module dans C, par la norme dans un espace vectoriel normé) mais on verra que l'on peut même s'en passer pourvu qu'on ait une topologie.
Construction des nombres réelsEn mathématiques, il existe différentes constructions des nombres réels, dont les deux plus connues sont : les coupures de Dedekind, qui définissent, via la théorie des ensembles, un réel comme l'ensemble des rationnels qui lui sont strictement inférieurs ; les suites de Cauchy, qui définissent, via l'analyse, un réel comme une suite de rationnels convergeant vers lui. C'est à partir des années 1860 que la nécessité de présenter une construction des nombres réels se fait de plus en plus pressante, dans le but d'asseoir l'analyse sur des fondements rigoureux.
Espace pseudo-métriqueEn mathématiques, un espace pseudo-métrique est un ensemble muni d'une pseudo-distance. C'est une généralisation de la notion d'espace métrique. Sur un espace vectoriel, tout comme une norme induit une distance, une semi-norme induit une semi-distance. Pour cette raison, en analyse fonctionnelle et dans les disciplines mathématiques apparentées, l'expression « espace semi-métrique » est utilisée comme synonyme d'espace pseudo-métrique (alors qu'« espace semi-métrique » a un autre sens en topologie).