Concepts associés (13)
Point stationnaire
350px|thumb|right|Les points stationnaires de la fonction sont marquées par des ronds rouges. Dans ce cas, ce sont des extrema locaux. Les carrés bleus désignent les points d'inflexion. En analyse réelle, un point stationnaire ou point critique d'une fonction dérivable d'une variable réelle est un point de son graphe où sa dérivée s'annule. Visuellement, cela se traduit par un point où la fonction arrête de croître ou de décroître. Pour une fonction de plusieurs variables réelles, un point stationnaire (critique) est un point où le gradient s'annule.
Extremum
Un extremum (pluriel extrema ou extremums), ou extrémum (pluriel extrémums), est une valeur extrême, soit maximum, soit minimum. Cette notion est particulièrement utilisée en mathématiques, où l'expression maximo-minimum, introduite par Nicolas de Cues, correspond à partir de Fermat et Leibniz aux extrêmes d'une courbe ou d'une fonction, repérés par le fait que les dérivées s'y annulent. Elle est aussi utilisée en physique, où le principe de moindre action est un principe extrémal ainsi que Euler l'a montré.
Point critique (mathématiques)
En analyse à plusieurs variables, un point critique d'une fonction de plusieurs variables, à valeurs numériques, est un point d'annulation de son gradient, c'est-à-dire un point tel que . La valeur prise par la fonction en un point critique s'appelle alors une valeur critique. Les valeurs qui ne sont pas critiques sont appelées valeurs régulières. Les points critiques servent d'intermédiaire pour la recherche des extrémums d'une telle fonction.
Théorème de Fermat sur les points stationnaires
En analyse réelle, le théorème de Fermat sur les points stationnaires permet, lors de la recherche d'éventuels extrema locaux d'une fonction dérivable, de limiter l'étude aux zéros de sa dérivée et aux bornes de son ensemble de définition. L'énoncé est le suivant : La réciproque est fausse : par exemple, la fonction , en , a une dérivée nulle mais pas d'extremum local. La condition nécessaire pour un extremum local ne s'applique pas aux bornes de l'intervalle. Par exemple, la fonction admet deux extremums globaux (a fortiori locaux), atteints en 0 et 1.
Matrice hessienne
En mathématiques, la matrice hessienne (ou simplement le hessien ou la hessienne) d'une fonction numérique est la matrice carrée, notée , de ses dérivées partielles secondes. Etant donnée une fonction à valeurs réelles dont toutes les dérivées partielles secondes existent, le coefficient d'indice de la matrice hessienne vaut . Autrement dit, On appelle discriminant hessien (ou simplement hessien) le déterminant de cette matrice. Le terme « hessien » a été introduit par James Joseph Sylvester, en hommage au mathématicien allemand Ludwig Otto Hesse.
Point col
En mathématiques, un point col ou point-selle () d'une fonction f définie sur un produit cartésien X × Y de deux ensembles X et Y est un point tel que : atteint un maximum en sur Y ; et atteint un minimum en sur X. Certains auteurs inversent les maximum et minimum ( a un minimum en et a un maximum en ), mais cela ne modifie pas qualitativement les résultats (on peut revenir au cas présent par un changement de variables). Le terme point-selle fait référence à la forme de selle de cheval que prend le graphe de la fonction lorsque X et Y sont des intervalles de .
Dérivée seconde
La dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Feasible region
In mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Optimisation (mathématiques)
L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Point d'inflexion
thumb|Représentation graphique de la fonction x ↦ x montrant un point d'inflexion aux coordonnées (0, 0). thumb|Point d'inflexion de la fonction arc tangente. En mathématiques, et plus précisément en analyse et en géométrie différentielle, un point d'inflexion est un point où s'opère un changement de concavité d'une courbe plane. En un tel point, la tangente traverse la courbe. C'est pourquoi les points d'inflexion, quand on arrive à les déterminer explicitement, aident à bien représenter l'allure de la courbe.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.