Projective linear groupIn mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group PGL(V) = GL(V)/Z(V) where GL(V) is the general linear group of V and Z(V) is the subgroup of all nonzero scalar transformations of V; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group.
Théorèmes de SylowEn théorie des groupes finis, les théorèmes de Sylow forment une réciproque partielle du théorème de Lagrange, d'après lequel, si H est sous-groupe d'un groupe fini G, alors l'ordre de H divise l'ordre de G. Ces théorèmes garantissent, pour certains diviseurs de l'ordre de G, l'existence de sous-groupes d'ordre égal à ces diviseurs, et donnent une information sur le nombre de ces sous-groupes. Ces théorèmes portent le nom du mathématicien norvégien Ludwig Sylow, qui les démontra en 1872.
Caractère d'une représentation d'un groupe finiEn mathématiques le caractère d'une représentation d'un groupe fini est un outil utilisé pour analyser les représentations d'un groupe fini. Le caractère d'une représentation (V, ρ) d'un groupe G correspond à l'application de G dans le corps de l'espace de la représentation qui à un élément s associe la trace de l'image de s par ρ. Cette définition n'est pas compatible avec celle des caractères d'un groupe en général qui ne prend ses valeurs que dans l'ensemble des complexes non nuls.
P-groupeEn mathématiques, et plus précisément en algèbre, un p-groupe, pour un nombre premier p donné, est un groupe (fini ou infini) dont tout élément a pour ordre une puissance de p. Les p-sous-groupes de Sylow d'un groupe fini sont un exemple important de p-groupes. Tout sous-groupe et tout quotient d'un p-groupe est un p-groupe. Réciproquement, si H est un p-sous-groupe normal d'un groupe G et si le quotient G/H est un p-groupe, alors G est un p-groupe. On peut tirer du point précédent qu'un produit semi-direct de deux p-groupes est un p-groupe.
Modular representation theoryModular representation theory is a branch of mathematics, and is the part of representation theory that studies linear representations of finite groups over a field K of positive characteristic p, necessarily a prime number. As well as having applications to group theory, modular representations arise naturally in other branches of mathematics, such as algebraic geometry, coding theory, combinatorics and number theory.
Théorème de Burnside (groupe résoluble)En mathématiques, le théorème de Burnside appartient à la théorie des groupes finis. Son énoncé est : Il est nommé en l'honneur de William Burnside, qui l'a démontré en 1904, à l'aide de la théorie des représentations d'un groupe fini. À une époque où que tout groupe fini ayant pour ordre une puissance de nombre premier est résoluble, Georg Frobenius démontre en 1895 que tout groupe d'ordre pq, où p et q sont des nombres premiers, est résoluble. Ce résultat est étendu trois ans plus tard par Camille Jordan aux groupes d'ordre pq.
Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Groupes de ConwayEn mathématiques, les groupes de Conway Co, Co et Co sont trois groupes sporadiques découverts par John Horton Conway en 1968. Tous sont intimement liés au réseau de Leech Λ. Le plus grand, Co, d'ordre , est obtenu en quotientant le groupe des automorphismes de Λ par son centre, qui est constitué des matrices scalaires ±1. Les groupes Co (d'ordre ) et Co (d'ordre ) sont constitués des automorphismes de Λ fixant un vecteur de réseau de type 2 et un vecteur de type 3 respectivement.
Extension de groupesEn mathématiques, plus précisément en théorie des groupes, une extension de groupes est une manière de décrire un groupe en termes de deux groupes « plus petits ». Plus précisément, une extension d'un groupe Q par un groupe N est un groupe G qui s'insère dans une suite exacte courte Autrement dit : G est une extension de Q par N si (à isomorphismes près) N est un sous-groupe normal de G et Q est le groupe quotient G/N. L'extension est dite centrale si N est inclus dans le centre de G.
Groupe de MathieuEn mathématiques, les groupes de Mathieu sont cinq groupes simples finis découverts par le mathématicien français Émile Mathieu. Ils sont habituellement perçus comme des groupes de permutations sur n points (où n peut prendre les valeurs 11, 12, 22, 23 ou 24) et sont nommés M. Les groupes de Mathieu ont été les premiers groupes sporadiques découverts. Les groupes M et M sont 5-transitifs, les groupes M et M sont 4-transitifs et M est 3-transitif. Cette transitivité est même stricte pour M et M.