LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Interprétation (logique)En logique, une interprétation est une attribution de sens aux symboles d'un langage formel. Les langages formels utilisés en mathématiques, en logique et en informatique théorique ne sont définis dans un premier temps que syntaxiquement ; pour en donner une définition complète, il faut expliquer comment ils fonctionnent et en donner une interprétation. Le domaine de la logique qui donne une interprétation aux langages formels s'appelle la sémantique formelle.
Théorie de la démonstrationLa théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.
Wilhelm AckermannWilhelm Ackermann (1896-1962) est un mathématicien allemand, célèbre pour la fonction d'Ackermann (1925) qui est un exemple important de la théorie de la calculabilité. Sa thèse (1924) donne une preuve détaillée de la cohérence de l'. Il fut professeur dans le secondaire, à Burgsteinfurt de 1929 à 1948, puis à Lüdenscheid jusqu'à sa retraite en 1961. Il fut membre correspondant de l'Académie des sciences de Göttingen et professeur honoraire de l'université de Münster.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Théorie axiomatiqueQuand on parle de théorie mathématique, on fait référence à une somme d'énoncés, de définitions, de méthodes de preuve, etc. La théorie de la calculabilité en est un exemple. Par théorie axiomatique, on fait référence à quelque chose de plus précis, des axiomes et leurs conséquences, les théorèmes, énoncés dans un langage précis. Dans la suite on dira le plus souvent théorie pour théorie axiomatique, ce qui est d'usage courant en logique mathématique.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
ContradictionEn logique des propositions, une contradiction ou antilogie est une formule qui est toujours fausse, quelle que soit la valeur des variables propositionnelles. On dit aussi que la formule est insatisfaisable, antilogique ou encore contradictoire. L’antilogie, de symbole , s’oppose à la tautologie qui est toujours vraie. La contradiction est une relation existant entre deux ou plusieurs termes ou deux ou plusieurs propositions dont l’un(e) affirme ce que l’autre nie : « A » et « non-A » sont contradictoires, les phrases « Tous les hommes sont barbus » et « Quelques hommes ne sont pas barbus » sont contradictoires.
Calcul des séquentsEn logique mathématique et plus précisément en théorie de la démonstration, le calcul des séquents est un système de déduction créé par Gerhard Gentzen. Le nom de ce formalisme fait référence à un style particulier de déduction ; le système original a été adapté à diverses logiques, telles que la logique classique, la logique intuitionniste et la logique linéaire. Un séquent est une suite d'hypothèses suivie d'une suite de conclusions, les deux suites étant usuellement séparées par le symbole (taquet droit), « : » (deux-points) ou encore (flèche droite) dans l'œuvre originale de Gentzen.