Théorie des représentationsLa théorie des représentations est une branche des mathématiques qui étudie les structures algébriques abstraites en représentant leurs éléments comme des transformations linéaires d'espaces vectoriels, et qui étudie les modules sur ces structures algébriques abstraites. Essentiellement, une représentation concrétise un objet algébrique abstrait en décrivant ses éléments par des matrices et les opérations sur ces éléments en termes d'addition matricielle et de produit matriciel.
Atle SelbergAtle Selberg (né le à Langesund (Norvège) et mort le à Princeton (New Jersey)) est un mathématicien norvégien connu pour son travail en théorie analytique des nombres et dans la théorie des formes automorphes, en particulier en liaison avec la théorie spectrale. Dès sa jeunesse, Selberg a été influencé par l'œuvre de Ramanujan. Il a fait ses études à l'université d'Oslo et soutenu son doctorat en 1943. Il a été élève de Viggo Brun. Durant la Seconde Guerre mondiale, il a travaillé seul à cause de l'occupation de la Norvège par l'Allemagne nazie.
Congruence subgroupIn mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
Forme paraboliqueEn mathématiques, une forme parabolique (parfois appelée forme cuspidale, selon l'anglais cusp form) est une forme modulaire vérifiant des conditions d'annulation aux pointes. La parabole est une des trois coniques (avec l'hyperbole, et l'ellipse dont le cercle peut être considéré comme un cas particulier) découvertes par les mathématiciens grecs en tant qu'intersection d'un cône par un plan (du grec kônos). vignette|302x302px|Équation réduite y2 = 2px, paramètre de la parabole Nom de la fonction associée : trinôme du second degré.
Forme modulaireEn mathématiques, une forme modulaire est une fonction analytique sur le demi-plan de Poincaré satisfaisant à une certaine sorte d'équation fonctionnelle et de condition de croissance. La théorie des formes modulaires est par conséquent dans la lignée de l'analyse complexe mais l'importance principale de la théorie tient dans ses connexions avec le théorème de modularité et la théorie des nombres.
Programme de LanglandsEn mathématiques, le programme de Langlands est encore, au début du , un domaine de recherche actif et fertile en conjectures. Ce programme souhaite relier la théorie des nombres aux représentations de certains groupes. Il a été proposé par Robert Langlands en 1967. La première étape du programme, réalisée bien avant les travaux de Langlands, peut être vue comme la théorie des corps de classes.
Gorō ShimuraGorō Shimura (japonais : 志村 五郎 Shimura Gorō), né le à Hamamatsu et mort le , est un mathématicien japonais naturalisé américain. Il termine comme professeur émérite de mathématiques (l'ancienne chaire Michael Henry Strater Chair) à l'université de Princeton. Il est connu d'un plus large public par la conjecture de Shimura-Taniyama-Weil, qui est reliée au dernier théorème de Fermat et qui a été démontrée par Andrew Wiles, après onze ans de travaux, en 1995. It is published from Iwanami Shoten in Japan.
Fonction de plusieurs variables complexesLa théorie des fonctions de plusieurs variables complexes est une branche des mathématiques traitant des fonctions à variables complexes. On définit de cette manière une fonction de Cn dans C, dont on peut noter les variables . L'analyse complexe correspond au cas . H. Cartan: Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Hermann, Paris, 1961. C. Laurent-Thiébaut : Théorie des fonctions holomorphes de plusieurs variables. EDP Sciences, 1997. V.S.
Fonction êta de DedekindLa fonction êta de Dedekind est une fonction définie sur le demi-plan de Poincaré formé par les nombres complexes de partie imaginaire strictement positive. Pour un tel nombre complexe , on pose et la fonction êta est alors : , en posant . La fonction êta est holomorphe dans le demi-plan supérieur mais n'admet pas de prolongement analytique en dehors de cet ensemble. La fonction êta vérifie les deux équations fonctionnelles et La seconde se généralise : soient des entiers tels que (donc associés à une transformation de Möbius appartenant au groupe modulaire), avec .
André WeilAndré Weil, né le à Paris et mort à Princeton (New Jersey, États-Unis) le , est une des grandes figures parmi les mathématiciens du . Connu pour son travail fondamental en théorie des nombres et en géométrie algébrique, il est un des membres fondateurs du groupe Bourbaki. Il est le frère de la philosophe Simone Weil et père de l'écrivaine Sylvie Weil. vignette|gauche|La famille Weil en 1916. André Weil est le fils aîné d'une famille bourgeoise, unie, raisonnablement aisée et agnostique, d'origine juive alsacienne du côté de son père Bernard et juive russe du côté de sa mère Selma Reinherz.