Prime k-tupleIn number theory, a prime k-tuple is a finite collection of values representing a repeatable pattern of differences between prime numbers. For a k-tuple (a, b, ...), the positions where the k-tuple matches a pattern in the prime numbers are given by the set of integers n such that all of the values (n + a, n + b, ...) are prime. Typically the first value in the k-tuple is 0 and the rest are distinct positive even numbers. Several of the shortest k-tuples are known by other common names: OEIS sequence covers 7-tuples (prime septuplets) and contains an overview of related sequences, e.
Théorème de Brunvignette|ce schéma représente la théorie Le théorème de Brun énonce la convergence de la série des inverses des nombres premiers jumeaux. Sa somme est appelée constante de Brun. Autrement dit la somme (où désigne l'ensemble des nombres premiers) est finie. Le mathématicien norvégien Viggo Brun restera dans les mémoires comme étant l'inventeur des méthodes modernes de cribles combinatoires. Entre 1917 et 1924, il inventera et perfectionnera cette théorie, dont le principe repose sur le crible d'Ératosthène.
Triplet premierEn théorie des nombres, un triplet premier est une suite de trois nombres premiers consécutifs telle que l'écart entre le plus petit et le plus grand soit de 6, ce qui est le plus petit écart possible pour une telle suite, à l'exception des triplets (2,3,5) et (3,5,7). Un triplet premier est nécessairement de la forme (p, p + 2, p + 6) ou (p, p + 4, p + 6). Une conjecture, renforçant celle des nombres premiers jumeaux, est l'existence d'une infinité de triplets de chacune des deux formes.
Nombres premiers jumeauxEn mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de 2. Hormis pour le couple (2, 3), cet écart entre nombres premiers de 2 est le plus petit possible. Les plus petits nombres premiers jumeaux sont 3 et 5, 5 et 7, 11 et 13. En , les plus grands nombres premiers jumeaux connus, découverts en 2016 dans le cadre du projet de calcul distribué PrimeGrid, sont × 2 ± 1 ; ils possèdent chiffres en écriture décimale.
Nombres premiers cousinsEn mathématiques, les nombres premiers cousins sont les paires de nombres premiers qui diffèrent de 4. Ils se rapprochent ainsi des nombres premiers jumeaux, les paires de nombres premiers qui diffèrent de 2, et des nombres premiers sexy, les paires de nombres premiers qui diffèrent de 6.
23 (nombre)Le nombre 23 (vingt-trois) est l'entier naturel qui suit 22 et qui précède 24. Le nombre 23 est : le neuvième nombre premier (cousin avec 19 et sexy avec 17 et avec 29) ; un nombre premier factoriel ; le septième nombre premier non brésilien ; un nombre premier de Sophie Germain ; un nombre premier sûr ; un nombre premier supersingulier un nombre de Woodall ; un nombre de Smarandache-Wellin ; un nombre premier long ; un nombre premier de Pillai ; le plus petit entier n > 0 tel que Z[e] ne soit pas principal ; le seul entier naturel avec 239 à ne pas être somme de 8 cubes (voir problème de Waring); le nombre de personnes que l'on doit réunir pour avoir au moins une chance sur deux que deux personnes de ce groupe aient leur anniversaire le même jour (voir le Paradoxe des anniversaires) ; un nombre de Wedderburn-Etherington ; la somme des produits des quatre premiers entiers par leur factorielle .
Nombres premiers sexyEn mathématiques, un couple de nombres premiers sexy (ou nombres premiers sexys) est un couple de nombres premiers dont la différence est 6 (autrement dit, un couple de la forme (p, p + 6) où p et p + 6 sont des nombres premiers). C'est le cas, par exemple, des nombres 5 et 11. Certains de ces nombres premiers sont consécutifs, par exemple 23 et 29 sont premiers et il n'y a pas de nombre premier entre eux deux. Le terme « sexy » est un jeu de mots fondé sur le mot latin pour « six » : sex.
5 (nombre)5 (cinq) est l'entier naturel qui suit 4 et qui précède 6. Le nombre cinq correspond au nombre normal de doigts d'une main ou d'un pied humains. Le préfixe du Système international pour (10) est péta (P), et pour son inverse, 10, femto (f). La plupart des systèmes de numération possèdent un chiffre pour signifier le nombre cinq. Cinq (chiffre) Le chiffre « cinq », symbolisé « 5 », est le chiffre arabe servant notamment à signifier le nombre cinq.
13 (nombre)Le nombre 13 (treize) est l'entier naturel qui suit 12 et précède 14. Le nombre 13 est : le petit nombre premier (jumeau avec 11, cousin avec 17, sexy avec 19 et 7) ; l'un des trois seuls nombres premiers de Wilson connus ; le cinquième exposant premier de Mersenne, donnant ; le troisième nombre premier chanceux ; un nombre premier super-singulier ; le nombre premier brésilien car 13 = 1113 ; le nombre étoilé à 6 branches et le nombre carré centré ; le septième nombre de Fibonacci ; la somme des trois premières puissances de 3 (3 + 3 + 3 = 13) ; la somme des deux premiers carrés de nombres premiers (2 + 3 = 13).
11 (nombre)Le nombre 11 (onze) est l’entier naturel qui suit 10 et qui précède 12. Le nombre 11 est : le cinquième nombre premier et, en , le plus petit nombre premier à deux chiffres ; le cinquième nombre premier supersingulier (sur quinze en tout) ; le cinquième nombre premier de Chen (tout nombre premier supersingulier est un nombre premier de Chen) le troisième nombre premier sûr de la forme avec n premier : 2 × 5 + 1 ; le quatrième nombre premier de Sophie Germain (nombre premier n tel que 2n + 1 est premier) : en effet (2 × 11) + 1 = 23 est premier ; un nombre premier unique ; le quatrième nombre premier non brésilien bien qu'il soit répunit 11 = 1110, mais par convention l'écriture n = 11n–1 est proscrite, sinon, tout nombre serait alors brésilien.