HeptagoneUn heptagone est un polygone à sept sommets, donc sept côtés et quatorze diagonales. La somme des angles internes d'un heptagone non croisé vaut . Un heptagone régulier est un heptagone dont tous les côtés sont égaux et dont tous les angles internes sont égaux. Il y en a trois : deux étoilés (les heptagrammes réguliers) et un convexe. C'est de ce dernier qu'il s'agit lorsqu'on parle de « l'heptagone régulier ». L'heptagone régulier est le plus petit des polygones réguliers non constructibles à la règle et au compas.
Triangle équilatéralEn géométrie euclidienne, un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles internes ont alors la même mesure de 60 degrés, et il constitue ainsi un polygone régulier à trois sommets. Tous les triangles équilatéraux sont semblables. Chaque triangle équilatéral est invariant par trois symétries axiales et deux rotations dont le centre est à la fois le centre de gravité, l'orthocentre et le centre des cercles inscrit et circonscrit au triangle.
BisectionIn geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'.
Nombre premier de PierpontEn arithmétique, les nombres premiers de Pierpont — nommés ainsi d'après James Pierpont — sont les nombres premiers de la forme 23 + 1, pour u et v deux entiers naturels. On montre facilement que si v = 0 et u > 0, alors u doit être une puissance de 2, c'est-à-dire que 2 + 1 doit être un nombre de Fermat. Par ailleurs, si v > 0 alors u doit être lui aussi non nul (car si v > 0 alors le nombre pair est strictement supérieur à 2 et par conséquent composé) donc le nombre de Pierpont est de la forme 6k + 1.
Pappus d'AlexandrieNOTOC Pappus d'Alexandrie — nom latinisé de Pappos d'Alexandrie, en grec — est l'un des plus importants mathématiciens de la Grèce antique. Il est né à Alexandrie en Égypte et a vécu au Très peu de choses sur sa vie sont connues. Les écrits nous suggèrent qu'il fut précepteur. Son principal ouvrage est connu sous le nom de Synagogè (paru vers 340 de notre ère). Il comprend au moins huit volumes qui nous sont parvenus, le reste ayant été perdu.
TétradécagoneUn tétradécagone ou tétrakaidécagone ou quadridécagone est un polygone à 14 sommets, donc 14 côtés et 77 diagonales. La somme des angles internes de tout tétradécagone non croisé vaut . Un tétradécagone régulier est un tétradécagone dont les 14 côtés ont la même longueur et dont les 14 angles internes ont même mesure. Il y en a trois : deux étoilés (les tétradécagrammes notés {14/3} et {14/5}) et un convexe (noté {14}). C'est de ce dernier qu'il s'agit lorsqu'on dit « le tétradécagone régulier ».
Casus irreducibilisEn algèbre, le casus irreducibilis (latin pour « cas irréductible ») désigne un cas apparaissant lors de la recherche des racines réelles d'un polynôme à coefficients entiers de degré 3 ou plus : c'est celui où les racines ne peuvent s'exprimer à l'aide de radicaux réels. Le casus irreducibilis le plus connu est celui des polynômes de degré 3 irréductibles dans les rationnels (impossibles à factoriser en polynômes de degré moindre) ayant trois racines réelles, cas qui a été prouvé par Pierre Wantzel en 1843.
Identité trigonométriqueUne identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
Racine cubiquevignette|Courbe représentative de la fonction racine cubique sur R. En mathématiques, la racine cubique d'un nombre réel est l'unique nombre réel dont le cube (c'est-à-dire la puissance ) vaut ; en d'autres termes, . La racine cubique de est notée . On peut également parler des racines cubiques d'un nombre complexe. De façon générale, on appelle racine cubique d'un nombre (réel ou complexe) tout nombre solution de l'équation : Si est réel, cette équation a dans R une unique solution, qu'on appelle la racine cubique du réel : .
Triangle isocèlevignette|upright|Un triangle isocèle. En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base. Dans un triangle isocèle, les angles adjacents à la base sont égaux. Un triangle équilatéral est un cas particulier de triangle isocèle, ayant ses trois côtés de même longueur.